A Note on Iterative Solutions of an Iterative Functional Differential Equation
We propose an iterative method for solving the following iterative functional-differential equation: x ′′ ( t ) = ⋋ 1 x ( t ) + ⋋ 2 x [2] ( t ) + … + ⋋ n x [ n ] ( t ) + f ( t ) .
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2021-04, Vol.72 (11), p.1807-1819 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1819 |
---|---|
container_issue | 11 |
container_start_page | 1807 |
container_title | Ukrainian mathematical journal |
container_volume | 72 |
creator | Zhao, H. Y. |
description | We propose an iterative method for solving the following iterative functional-differential equation:
x
′′ (
t
) = ⋋
1
x
(
t
) + ⋋
2
x
[2]
(
t
) + … + ⋋
n
x
[
n
]
(
t
) +
f
(
t
)
. |
doi_str_mv | 10.1007/s11253-021-01890-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2543085876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A732351620</galeid><sourcerecordid>A732351620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-ef8a4aed81c8d4d835b4bdbd41fdb1b56edef4e742906210eedc1215a155e88f3</originalsourceid><addsrcrecordid>eNqNkU9LAzEQxYMoWKtfwNOC562Z_NnNHkttVSj1oJ5DdjORLe1Gk13Bb2_qCnoSmcMwM-83PHiEXAKdAaXldQRgkueUQU5BVTQvjsgEZMnzipfFMZlQKiCXVSVPyVmMW0oTpsoJ2cyzje8x811232MwffuO2aPfDX3ru5h5l5nfl9XQNYeL2WU3rXMYsOvbNCzfBnPYn5MTZ3YRL777lDyvlk-Lu3z9cHu_mK_zhgvV5-iUEQatgkZZYRWXtahtbQU4W0MtC7ToBJaCVbRgQBFtAwykASlRKcen5Gr8-xr824Cx11s_hGQraiYFp0qqskiq2ah6MTvUbed8H0yTyuK-bXyHrk37eckZl1Aw-l-gUIxJyrhKABuBJvgYAzr9Gtq9CR8aqD4ko8dkdEpGfyWjD7b4CMUk7l4w_Jj_g_oE_VCQgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543085876</pqid></control><display><type>article</type><title>A Note on Iterative Solutions of an Iterative Functional Differential Equation</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhao, H. Y.</creator><creatorcontrib>Zhao, H. Y.</creatorcontrib><description>We propose an iterative method for solving the following iterative functional-differential equation:
x
′′ (
t
) = ⋋
1
x
(
t
) + ⋋
2
x
[2]
(
t
) + … + ⋋
n
x
[
n
]
(
t
) +
f
(
t
)
.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-021-01890-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Differential equations ; Geometry ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2021-04, Vol.72 (11), p.1807-1819</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-ef8a4aed81c8d4d835b4bdbd41fdb1b56edef4e742906210eedc1215a155e88f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-021-01890-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-021-01890-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Zhao, H. Y.</creatorcontrib><title>A Note on Iterative Solutions of an Iterative Functional Differential Equation</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We propose an iterative method for solving the following iterative functional-differential equation:
x
′′ (
t
) = ⋋
1
x
(
t
) + ⋋
2
x
[2]
(
t
) + … + ⋋
n
x
[
n
]
(
t
) +
f
(
t
)
.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkU9LAzEQxYMoWKtfwNOC562Z_NnNHkttVSj1oJ5DdjORLe1Gk13Bb2_qCnoSmcMwM-83PHiEXAKdAaXldQRgkueUQU5BVTQvjsgEZMnzipfFMZlQKiCXVSVPyVmMW0oTpsoJ2cyzje8x811232MwffuO2aPfDX3ru5h5l5nfl9XQNYeL2WU3rXMYsOvbNCzfBnPYn5MTZ3YRL777lDyvlk-Lu3z9cHu_mK_zhgvV5-iUEQatgkZZYRWXtahtbQU4W0MtC7ToBJaCVbRgQBFtAwykASlRKcen5Gr8-xr824Cx11s_hGQraiYFp0qqskiq2ah6MTvUbed8H0yTyuK-bXyHrk37eckZl1Aw-l-gUIxJyrhKABuBJvgYAzr9Gtq9CR8aqD4ko8dkdEpGfyWjD7b4CMUk7l4w_Jj_g_oE_VCQgw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhao, H. Y.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>A Note on Iterative Solutions of an Iterative Functional Differential Equation</title><author>Zhao, H. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-ef8a4aed81c8d4d835b4bdbd41fdb1b56edef4e742906210eedc1215a155e88f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, H. Y.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, H. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on Iterative Solutions of an Iterative Functional Differential Equation</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>72</volume><issue>11</issue><spage>1807</spage><epage>1819</epage><pages>1807-1819</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We propose an iterative method for solving the following iterative functional-differential equation:
x
′′ (
t
) = ⋋
1
x
(
t
) + ⋋
2
x
[2]
(
t
) + … + ⋋
n
x
[
n
]
(
t
) +
f
(
t
)
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-021-01890-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-5995 |
ispartof | Ukrainian mathematical journal, 2021-04, Vol.72 (11), p.1807-1819 |
issn | 0041-5995 1573-9376 |
language | eng |
recordid | cdi_proquest_journals_2543085876 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Analysis Applications of Mathematics Differential equations Geometry Mathematics Mathematics and Statistics Statistics |
title | A Note on Iterative Solutions of an Iterative Functional Differential Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Iterative%20Solutions%20of%20an%20Iterative%20Functional%20Differential%20Equation&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Zhao,%20H.%20Y.&rft.date=2021-04-01&rft.volume=72&rft.issue=11&rft.spage=1807&rft.epage=1819&rft.pages=1807-1819&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-021-01890-6&rft_dat=%3Cgale_proqu%3EA732351620%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543085876&rft_id=info:pmid/&rft_galeid=A732351620&rfr_iscdi=true |