Transport coefficients and pressure conditions for growth of ice lens in frozen soil

In this paper, the transport of sub-cooled water across a partially frozen soil matrix (frozen fringe) caused by a temperature difference over the fringe, is described using non-equilibrium thermodynamics. A set of coupled transport equations of heat and mass is presented; implying that, in the froz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2021-07, Vol.16 (7), p.2231-2239
Hauptverfasser: Kjelstrup, S., Ghoreishian Amiri, S. A., Loranger, B., Gao, H., Grimstad, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2239
container_issue 7
container_start_page 2231
container_title Acta geotechnica
container_volume 16
creator Kjelstrup, S.
Ghoreishian Amiri, S. A.
Loranger, B.
Gao, H.
Grimstad, G.
description In this paper, the transport of sub-cooled water across a partially frozen soil matrix (frozen fringe) caused by a temperature difference over the fringe, is described using non-equilibrium thermodynamics. A set of coupled transport equations of heat and mass is presented; implying that, in the frozen fringe, both driving forces of pressure and temperature gradients simultaneously contribute to transport of water and heat. The temperature-gradient-induced water flow is the main source of frost heave phenomenon that feeds the growing ice lens. It is shown that three measurable transport coefficients are adequate to model the process; permeability (also called hydraulic conductivity), thermal conductivity and a cross coupling coefficient that may be named thermodynamic frost heave coefficient . Thus, no ad hoc parameterizations are required. The definition and experimental determination of the transport coefficients are extensively discussed in the paper. The maximum pressure that is needed to stop the growth of an ice lens, called the maximum frost heave pressure , is predicted by the proposed model. Numerical results for corresponding temperature and pressure profiles are computed using available data sets from the literature. Frost heave rates are also computed and compared with the experimental results, and reasonable agreement is achieved.
doi_str_mv 10.1007/s11440-021-01158-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542947223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542947223</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-784f58397710d28d76daaa1878db8355bdda5872a0d7fcd7535cca3af027f6d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbDbpUYpaoeBl7yHNR02pyZpsEf31rq7ozdMMM-8HPAhdUrimAPKmUto0QIBRApQKReAIzahqKaGU8-PfnYlTdFbrDqDlrGlnqOuKSbXPZcA2-xCijT4NFZvkcF98rYfix09ycYg5VRxywduS34ZnnAOO1uO9H88x4VDyh0-45rg_RyfB7Ku_-Jlz1N3fdcsVWT89PC5v18Rw1Q5EqiYIxRdSUnBMOdk6YwxVUrmN4kJsnDNCSWbAyWCdFFxYa7gJwGRoHZ-jqym2L_n14Ougd_lQ0tiomWjYopGM8VHFJpUtudbig-5LfDHlXVPQX_D0BE-P8PQ3PA2jiU-mOorT1pe_6H9cn0WAcqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542947223</pqid></control><display><type>article</type><title>Transport coefficients and pressure conditions for growth of ice lens in frozen soil</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kjelstrup, S. ; Ghoreishian Amiri, S. A. ; Loranger, B. ; Gao, H. ; Grimstad, G.</creator><creatorcontrib>Kjelstrup, S. ; Ghoreishian Amiri, S. A. ; Loranger, B. ; Gao, H. ; Grimstad, G.</creatorcontrib><description>In this paper, the transport of sub-cooled water across a partially frozen soil matrix (frozen fringe) caused by a temperature difference over the fringe, is described using non-equilibrium thermodynamics. A set of coupled transport equations of heat and mass is presented; implying that, in the frozen fringe, both driving forces of pressure and temperature gradients simultaneously contribute to transport of water and heat. The temperature-gradient-induced water flow is the main source of frost heave phenomenon that feeds the growing ice lens. It is shown that three measurable transport coefficients are adequate to model the process; permeability (also called hydraulic conductivity), thermal conductivity and a cross coupling coefficient that may be named thermodynamic frost heave coefficient . Thus, no ad hoc parameterizations are required. The definition and experimental determination of the transport coefficients are extensively discussed in the paper. The maximum pressure that is needed to stop the growth of an ice lens, called the maximum frost heave pressure , is predicted by the proposed model. Numerical results for corresponding temperature and pressure profiles are computed using available data sets from the literature. Frost heave rates are also computed and compared with the experimental results, and reasonable agreement is achieved.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-021-01158-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coefficients ; Complex Fluids and Microfluidics ; Computation ; Coupling coefficients ; Cross coupling ; Engineering ; Equilibrium ; Foundations ; Frost ; Frost heaving ; Frozen ground ; Geoengineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Growth conditions ; Heat ; Heaving ; Hydraulics ; Ice ; Lenses ; Mathematical models ; Nonequilibrium thermodynamics ; Permeability ; Pressure ; Research Paper ; Soft and Granular Matter ; Soil ; Soil permeability ; Soil Science &amp; Conservation ; Soil temperature ; Solid Mechanics ; Temperature ; Temperature differences ; Temperature gradients ; Thermal conductivity ; Thermodynamic equilibrium ; Thermodynamics ; Transport ; Transport equations ; Transport properties ; Water flow</subject><ispartof>Acta geotechnica, 2021-07, Vol.16 (7), p.2231-2239</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-784f58397710d28d76daaa1878db8355bdda5872a0d7fcd7535cca3af027f6d3</citedby><cites>FETCH-LOGICAL-a386t-784f58397710d28d76daaa1878db8355bdda5872a0d7fcd7535cca3af027f6d3</cites><orcidid>0000-0003-3765-246X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-021-01158-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-021-01158-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids></links><search><creatorcontrib>Kjelstrup, S.</creatorcontrib><creatorcontrib>Ghoreishian Amiri, S. A.</creatorcontrib><creatorcontrib>Loranger, B.</creatorcontrib><creatorcontrib>Gao, H.</creatorcontrib><creatorcontrib>Grimstad, G.</creatorcontrib><title>Transport coefficients and pressure conditions for growth of ice lens in frozen soil</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>In this paper, the transport of sub-cooled water across a partially frozen soil matrix (frozen fringe) caused by a temperature difference over the fringe, is described using non-equilibrium thermodynamics. A set of coupled transport equations of heat and mass is presented; implying that, in the frozen fringe, both driving forces of pressure and temperature gradients simultaneously contribute to transport of water and heat. The temperature-gradient-induced water flow is the main source of frost heave phenomenon that feeds the growing ice lens. It is shown that three measurable transport coefficients are adequate to model the process; permeability (also called hydraulic conductivity), thermal conductivity and a cross coupling coefficient that may be named thermodynamic frost heave coefficient . Thus, no ad hoc parameterizations are required. The definition and experimental determination of the transport coefficients are extensively discussed in the paper. The maximum pressure that is needed to stop the growth of an ice lens, called the maximum frost heave pressure , is predicted by the proposed model. Numerical results for corresponding temperature and pressure profiles are computed using available data sets from the literature. Frost heave rates are also computed and compared with the experimental results, and reasonable agreement is achieved.</description><subject>Coefficients</subject><subject>Complex Fluids and Microfluidics</subject><subject>Computation</subject><subject>Coupling coefficients</subject><subject>Cross coupling</subject><subject>Engineering</subject><subject>Equilibrium</subject><subject>Foundations</subject><subject>Frost</subject><subject>Frost heaving</subject><subject>Frozen ground</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Growth conditions</subject><subject>Heat</subject><subject>Heaving</subject><subject>Hydraulics</subject><subject>Ice</subject><subject>Lenses</subject><subject>Mathematical models</subject><subject>Nonequilibrium thermodynamics</subject><subject>Permeability</subject><subject>Pressure</subject><subject>Research Paper</subject><subject>Soft and Granular Matter</subject><subject>Soil</subject><subject>Soil permeability</subject><subject>Soil Science &amp; Conservation</subject><subject>Soil temperature</subject><subject>Solid Mechanics</subject><subject>Temperature</subject><subject>Temperature differences</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>Transport</subject><subject>Transport equations</subject><subject>Transport properties</subject><subject>Water flow</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SSbDbpUYpaoeBl7yHNR02pyZpsEf31rq7ozdMMM-8HPAhdUrimAPKmUto0QIBRApQKReAIzahqKaGU8-PfnYlTdFbrDqDlrGlnqOuKSbXPZcA2-xCijT4NFZvkcF98rYfix09ycYg5VRxywduS34ZnnAOO1uO9H88x4VDyh0-45rg_RyfB7Ku_-Jlz1N3fdcsVWT89PC5v18Rw1Q5EqiYIxRdSUnBMOdk6YwxVUrmN4kJsnDNCSWbAyWCdFFxYa7gJwGRoHZ-jqym2L_n14Ougd_lQ0tiomWjYopGM8VHFJpUtudbig-5LfDHlXVPQX_D0BE-P8PQ3PA2jiU-mOorT1pe_6H9cn0WAcqE</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kjelstrup, S.</creator><creator>Ghoreishian Amiri, S. A.</creator><creator>Loranger, B.</creator><creator>Gao, H.</creator><creator>Grimstad, G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3765-246X</orcidid></search><sort><creationdate>20210701</creationdate><title>Transport coefficients and pressure conditions for growth of ice lens in frozen soil</title><author>Kjelstrup, S. ; Ghoreishian Amiri, S. A. ; Loranger, B. ; Gao, H. ; Grimstad, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-784f58397710d28d76daaa1878db8355bdda5872a0d7fcd7535cca3af027f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coefficients</topic><topic>Complex Fluids and Microfluidics</topic><topic>Computation</topic><topic>Coupling coefficients</topic><topic>Cross coupling</topic><topic>Engineering</topic><topic>Equilibrium</topic><topic>Foundations</topic><topic>Frost</topic><topic>Frost heaving</topic><topic>Frozen ground</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Growth conditions</topic><topic>Heat</topic><topic>Heaving</topic><topic>Hydraulics</topic><topic>Ice</topic><topic>Lenses</topic><topic>Mathematical models</topic><topic>Nonequilibrium thermodynamics</topic><topic>Permeability</topic><topic>Pressure</topic><topic>Research Paper</topic><topic>Soft and Granular Matter</topic><topic>Soil</topic><topic>Soil permeability</topic><topic>Soil Science &amp; Conservation</topic><topic>Soil temperature</topic><topic>Solid Mechanics</topic><topic>Temperature</topic><topic>Temperature differences</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>Transport</topic><topic>Transport equations</topic><topic>Transport properties</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kjelstrup, S.</creatorcontrib><creatorcontrib>Ghoreishian Amiri, S. A.</creatorcontrib><creatorcontrib>Loranger, B.</creatorcontrib><creatorcontrib>Gao, H.</creatorcontrib><creatorcontrib>Grimstad, G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kjelstrup, S.</au><au>Ghoreishian Amiri, S. A.</au><au>Loranger, B.</au><au>Gao, H.</au><au>Grimstad, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport coefficients and pressure conditions for growth of ice lens in frozen soil</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>16</volume><issue>7</issue><spage>2231</spage><epage>2239</epage><pages>2231-2239</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>In this paper, the transport of sub-cooled water across a partially frozen soil matrix (frozen fringe) caused by a temperature difference over the fringe, is described using non-equilibrium thermodynamics. A set of coupled transport equations of heat and mass is presented; implying that, in the frozen fringe, both driving forces of pressure and temperature gradients simultaneously contribute to transport of water and heat. The temperature-gradient-induced water flow is the main source of frost heave phenomenon that feeds the growing ice lens. It is shown that three measurable transport coefficients are adequate to model the process; permeability (also called hydraulic conductivity), thermal conductivity and a cross coupling coefficient that may be named thermodynamic frost heave coefficient . Thus, no ad hoc parameterizations are required. The definition and experimental determination of the transport coefficients are extensively discussed in the paper. The maximum pressure that is needed to stop the growth of an ice lens, called the maximum frost heave pressure , is predicted by the proposed model. Numerical results for corresponding temperature and pressure profiles are computed using available data sets from the literature. Frost heave rates are also computed and compared with the experimental results, and reasonable agreement is achieved.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-021-01158-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3765-246X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2021-07, Vol.16 (7), p.2231-2239
issn 1861-1125
1861-1133
language eng
recordid cdi_proquest_journals_2542947223
source SpringerLink Journals - AutoHoldings
subjects Coefficients
Complex Fluids and Microfluidics
Computation
Coupling coefficients
Cross coupling
Engineering
Equilibrium
Foundations
Frost
Frost heaving
Frozen ground
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Growth conditions
Heat
Heaving
Hydraulics
Ice
Lenses
Mathematical models
Nonequilibrium thermodynamics
Permeability
Pressure
Research Paper
Soft and Granular Matter
Soil
Soil permeability
Soil Science & Conservation
Soil temperature
Solid Mechanics
Temperature
Temperature differences
Temperature gradients
Thermal conductivity
Thermodynamic equilibrium
Thermodynamics
Transport
Transport equations
Transport properties
Water flow
title Transport coefficients and pressure conditions for growth of ice lens in frozen soil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20coefficients%20and%20pressure%20conditions%20for%20growth%20of%20ice%20lens%20in%20frozen%20soil&rft.jtitle=Acta%20geotechnica&rft.au=Kjelstrup,%20S.&rft.date=2021-07-01&rft.volume=16&rft.issue=7&rft.spage=2231&rft.epage=2239&rft.pages=2231-2239&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-021-01158-0&rft_dat=%3Cproquest_cross%3E2542947223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542947223&rft_id=info:pmid/&rfr_iscdi=true