Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice
Background and Aims Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitu...
Gespeichert in:
Veröffentlicht in: | Hepatology (Baltimore, Md.) Md.), 2021-06, Vol.73 (6), p.2206-2222 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2222 |
---|---|
container_issue | 6 |
container_start_page | 2206 |
container_title | Hepatology (Baltimore, Md.) |
container_volume | 73 |
creator | Lin, Qian Huang, Zhifeng Cai, Genxiang Fan, Xia Yan, Xiaoqing Liu, Zhengshuai Zhao, Zehua Li, Jingya Li, Jia Shi, Hongxue Kong, Maiying Zheng, Ming‐Hua Conklin, Daniel J. Epstein, Paul N. Wintergerst, Kupper A. Mohammadi, Moosa Cai, Lu Li, Xiaokun Li, Yu Tan, Yi |
description | Background and Aims
Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin‐binding sites (FGF1△HBS) against NAFLD.
Approach and Results
FGF1△HBS administration was effective in 9‐month‐old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45‐related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate–activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD‐like oxidative damage and lipid accumulation could be reversed by FGF1△HBS. In palmitate‐treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver‐specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high‐fat/high‐sucrose diet–induced hepatic steatosis. Moreover, FGF1△HBS improved high‐fat/high‐cholesterol diet–induced steatohepatitis and fibrosis in apolipoprotein E knockout mice.
Conclusions
These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4. |
doi_str_mv | 10.1002/hep.31568 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542545680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542545680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-5c8a5096536523165885792856a959e9023bcdef08ff9a21b841d0083a56eb7c3</originalsourceid><addsrcrecordid>eNp1kctO3DAUhi1EBcNlwQsgS6xYBHwZJ_ZyBAygDoVFu44c56QxysTB9oBmxzuw4_F4Ekwz7a7SkSwdff5k_z9CR5ScUULYeQvDGacil1toQgUrMs4F2UYTwgqSKcrVLtoL4ZEQoqZM7qBdzlQu8kJM0PvMRPuso-1_41kNvQu2B3zneje0LgytjvDx-raBoMYP3kWwPf5uex0SCLVN-4DntvKu6nSI-Nq7l9jiuTbReUzHK0ngejz3bol_uF53xrWusyZRMa7xwj6Dx5c2wJc06e-sgQP0rdFdgMPNuY9-za9-Xtxki_vr24vZIjNcSpkJI7Ug6T88F4zTXEgpCsWkyLUSChRhvDI1NEQ2jdKMVnJKa0Ik1yKHqjB8H52M3sG7pxWEWD66lU9vDCUT0zQpWJKo05Ey3oXgoSkHb5far0tKyq8WytRC-aeFxB5vjKtqCfU_8m_sCTgfgRfbwfr_pvLm6mFUfgJ51ZMW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542545680</pqid></control><display><type>article</type><title>Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lin, Qian ; Huang, Zhifeng ; Cai, Genxiang ; Fan, Xia ; Yan, Xiaoqing ; Liu, Zhengshuai ; Zhao, Zehua ; Li, Jingya ; Li, Jia ; Shi, Hongxue ; Kong, Maiying ; Zheng, Ming‐Hua ; Conklin, Daniel J. ; Epstein, Paul N. ; Wintergerst, Kupper A. ; Mohammadi, Moosa ; Cai, Lu ; Li, Xiaokun ; Li, Yu ; Tan, Yi</creator><creatorcontrib>Lin, Qian ; Huang, Zhifeng ; Cai, Genxiang ; Fan, Xia ; Yan, Xiaoqing ; Liu, Zhengshuai ; Zhao, Zehua ; Li, Jingya ; Li, Jia ; Shi, Hongxue ; Kong, Maiying ; Zheng, Ming‐Hua ; Conklin, Daniel J. ; Epstein, Paul N. ; Wintergerst, Kupper A. ; Mohammadi, Moosa ; Cai, Lu ; Li, Xiaokun ; Li, Yu ; Tan, Yi</creatorcontrib><description>Background and Aims
Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin‐binding sites (FGF1△HBS) against NAFLD.
Approach and Results
FGF1△HBS administration was effective in 9‐month‐old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45‐related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate–activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD‐like oxidative damage and lipid accumulation could be reversed by FGF1△HBS. In palmitate‐treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver‐specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high‐fat/high‐sucrose diet–induced hepatic steatosis. Moreover, FGF1△HBS improved high‐fat/high‐cholesterol diet–induced steatohepatitis and fibrosis in apolipoprotein E knockout mice.
Conclusions
These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.31568</identifier><identifier>PMID: 32965675</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>Adenosine ; Adenosine kinase ; AMP ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; Animals ; Antioxidants ; Apolipoprotein E ; Binding sites ; Cholesterol ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental ; Diet, High-Fat ; Fatty liver ; Fibroblast growth factor 1 ; Fibroblast Growth Factor 1 - pharmacology ; Fibroblast growth factor receptor 4 ; Fibroblast growth factor receptors ; Fibroblasts ; Fibrosis ; Growth factors ; Hep G2 Cells ; Heparin ; Hepatology ; High cholesterol diet ; High fat diet ; Humans ; Inflammation ; Kinases ; Lipid metabolism ; Lipid Metabolism - drug effects ; Lipids ; Liver ; Liver diseases ; Male ; Metabolism ; Mice ; Mice, Knockout ; Mice, Obese ; NF-E2-Related Factor 2 - metabolism ; Non-alcoholic Fatty Liver Disease - drug therapy ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; NRF2 protein ; Nuclear transport ; Oxidative metabolism ; Oxidative Stress ; Palmitates - pharmacology ; Palmitic acid ; Phosphorylation ; Protein kinase ; Proteins ; Receptor, Fibroblast Growth Factor, Type 4 - genetics ; Receptor, Fibroblast Growth Factor, Type 4 - metabolism ; siRNA</subject><ispartof>Hepatology (Baltimore, Md.), 2021-06, Vol.73 (6), p.2206-2222</ispartof><rights>2020 by the American Association for the Study of Liver Diseases.</rights><rights>2021 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-5c8a5096536523165885792856a959e9023bcdef08ff9a21b841d0083a56eb7c3</citedby><cites>FETCH-LOGICAL-c3888-5c8a5096536523165885792856a959e9023bcdef08ff9a21b841d0083a56eb7c3</cites><orcidid>0000-0001-6910-5933 ; 0000-0002-9798-6237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.31568$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.31568$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32965675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Qian</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Cai, Genxiang</creatorcontrib><creatorcontrib>Fan, Xia</creatorcontrib><creatorcontrib>Yan, Xiaoqing</creatorcontrib><creatorcontrib>Liu, Zhengshuai</creatorcontrib><creatorcontrib>Zhao, Zehua</creatorcontrib><creatorcontrib>Li, Jingya</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Shi, Hongxue</creatorcontrib><creatorcontrib>Kong, Maiying</creatorcontrib><creatorcontrib>Zheng, Ming‐Hua</creatorcontrib><creatorcontrib>Conklin, Daniel J.</creatorcontrib><creatorcontrib>Epstein, Paul N.</creatorcontrib><creatorcontrib>Wintergerst, Kupper A.</creatorcontrib><creatorcontrib>Mohammadi, Moosa</creatorcontrib><creatorcontrib>Cai, Lu</creatorcontrib><creatorcontrib>Li, Xiaokun</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Tan, Yi</creatorcontrib><title>Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Background and Aims
Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin‐binding sites (FGF1△HBS) against NAFLD.
Approach and Results
FGF1△HBS administration was effective in 9‐month‐old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45‐related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate–activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD‐like oxidative damage and lipid accumulation could be reversed by FGF1△HBS. In palmitate‐treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver‐specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high‐fat/high‐sucrose diet–induced hepatic steatosis. Moreover, FGF1△HBS improved high‐fat/high‐cholesterol diet–induced steatohepatitis and fibrosis in apolipoprotein E knockout mice.
Conclusions
These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4.</description><subject>Adenosine</subject><subject>Adenosine kinase</subject><subject>AMP</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Apolipoprotein E</subject><subject>Binding sites</subject><subject>Cholesterol</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental</subject><subject>Diet, High-Fat</subject><subject>Fatty liver</subject><subject>Fibroblast growth factor 1</subject><subject>Fibroblast Growth Factor 1 - pharmacology</subject><subject>Fibroblast growth factor receptor 4</subject><subject>Fibroblast growth factor receptors</subject><subject>Fibroblasts</subject><subject>Fibrosis</subject><subject>Growth factors</subject><subject>Hep G2 Cells</subject><subject>Heparin</subject><subject>Hepatology</subject><subject>High cholesterol diet</subject><subject>High fat diet</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Kinases</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Obese</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - drug therapy</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>NRF2 protein</subject><subject>Nuclear transport</subject><subject>Oxidative metabolism</subject><subject>Oxidative Stress</subject><subject>Palmitates - pharmacology</subject><subject>Palmitic acid</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Receptor, Fibroblast Growth Factor, Type 4 - genetics</subject><subject>Receptor, Fibroblast Growth Factor, Type 4 - metabolism</subject><subject>siRNA</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctO3DAUhi1EBcNlwQsgS6xYBHwZJ_ZyBAygDoVFu44c56QxysTB9oBmxzuw4_F4Ekwz7a7SkSwdff5k_z9CR5ScUULYeQvDGacil1toQgUrMs4F2UYTwgqSKcrVLtoL4ZEQoqZM7qBdzlQu8kJM0PvMRPuso-1_41kNvQu2B3zneje0LgytjvDx-raBoMYP3kWwPf5uex0SCLVN-4DntvKu6nSI-Nq7l9jiuTbReUzHK0ngejz3bol_uF53xrWusyZRMa7xwj6Dx5c2wJc06e-sgQP0rdFdgMPNuY9-za9-Xtxki_vr24vZIjNcSpkJI7Ug6T88F4zTXEgpCsWkyLUSChRhvDI1NEQ2jdKMVnJKa0Ik1yKHqjB8H52M3sG7pxWEWD66lU9vDCUT0zQpWJKo05Ey3oXgoSkHb5far0tKyq8WytRC-aeFxB5vjKtqCfU_8m_sCTgfgRfbwfr_pvLm6mFUfgJ51ZMW</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Lin, Qian</creator><creator>Huang, Zhifeng</creator><creator>Cai, Genxiang</creator><creator>Fan, Xia</creator><creator>Yan, Xiaoqing</creator><creator>Liu, Zhengshuai</creator><creator>Zhao, Zehua</creator><creator>Li, Jingya</creator><creator>Li, Jia</creator><creator>Shi, Hongxue</creator><creator>Kong, Maiying</creator><creator>Zheng, Ming‐Hua</creator><creator>Conklin, Daniel J.</creator><creator>Epstein, Paul N.</creator><creator>Wintergerst, Kupper A.</creator><creator>Mohammadi, Moosa</creator><creator>Cai, Lu</creator><creator>Li, Xiaokun</creator><creator>Li, Yu</creator><creator>Tan, Yi</creator><general>Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-6910-5933</orcidid><orcidid>https://orcid.org/0000-0002-9798-6237</orcidid></search><sort><creationdate>202106</creationdate><title>Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice</title><author>Lin, Qian ; Huang, Zhifeng ; Cai, Genxiang ; Fan, Xia ; Yan, Xiaoqing ; Liu, Zhengshuai ; Zhao, Zehua ; Li, Jingya ; Li, Jia ; Shi, Hongxue ; Kong, Maiying ; Zheng, Ming‐Hua ; Conklin, Daniel J. ; Epstein, Paul N. ; Wintergerst, Kupper A. ; Mohammadi, Moosa ; Cai, Lu ; Li, Xiaokun ; Li, Yu ; Tan, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-5c8a5096536523165885792856a959e9023bcdef08ff9a21b841d0083a56eb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine</topic><topic>Adenosine kinase</topic><topic>AMP</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Apolipoprotein E</topic><topic>Binding sites</topic><topic>Cholesterol</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental</topic><topic>Diet, High-Fat</topic><topic>Fatty liver</topic><topic>Fibroblast growth factor 1</topic><topic>Fibroblast Growth Factor 1 - pharmacology</topic><topic>Fibroblast growth factor receptor 4</topic><topic>Fibroblast growth factor receptors</topic><topic>Fibroblasts</topic><topic>Fibrosis</topic><topic>Growth factors</topic><topic>Hep G2 Cells</topic><topic>Heparin</topic><topic>Hepatology</topic><topic>High cholesterol diet</topic><topic>High fat diet</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Kinases</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Obese</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - drug therapy</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>NRF2 protein</topic><topic>Nuclear transport</topic><topic>Oxidative metabolism</topic><topic>Oxidative Stress</topic><topic>Palmitates - pharmacology</topic><topic>Palmitic acid</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Receptor, Fibroblast Growth Factor, Type 4 - genetics</topic><topic>Receptor, Fibroblast Growth Factor, Type 4 - metabolism</topic><topic>siRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Qian</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Cai, Genxiang</creatorcontrib><creatorcontrib>Fan, Xia</creatorcontrib><creatorcontrib>Yan, Xiaoqing</creatorcontrib><creatorcontrib>Liu, Zhengshuai</creatorcontrib><creatorcontrib>Zhao, Zehua</creatorcontrib><creatorcontrib>Li, Jingya</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Shi, Hongxue</creatorcontrib><creatorcontrib>Kong, Maiying</creatorcontrib><creatorcontrib>Zheng, Ming‐Hua</creatorcontrib><creatorcontrib>Conklin, Daniel J.</creatorcontrib><creatorcontrib>Epstein, Paul N.</creatorcontrib><creatorcontrib>Wintergerst, Kupper A.</creatorcontrib><creatorcontrib>Mohammadi, Moosa</creatorcontrib><creatorcontrib>Cai, Lu</creatorcontrib><creatorcontrib>Li, Xiaokun</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Tan, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Qian</au><au>Huang, Zhifeng</au><au>Cai, Genxiang</au><au>Fan, Xia</au><au>Yan, Xiaoqing</au><au>Liu, Zhengshuai</au><au>Zhao, Zehua</au><au>Li, Jingya</au><au>Li, Jia</au><au>Shi, Hongxue</au><au>Kong, Maiying</au><au>Zheng, Ming‐Hua</au><au>Conklin, Daniel J.</au><au>Epstein, Paul N.</au><au>Wintergerst, Kupper A.</au><au>Mohammadi, Moosa</au><au>Cai, Lu</au><au>Li, Xiaokun</au><au>Li, Yu</au><au>Tan, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2021-06</date><risdate>2021</risdate><volume>73</volume><issue>6</issue><spage>2206</spage><epage>2222</epage><pages>2206-2222</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Background and Aims
Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin‐binding sites (FGF1△HBS) against NAFLD.
Approach and Results
FGF1△HBS administration was effective in 9‐month‐old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45‐related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate–activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD‐like oxidative damage and lipid accumulation could be reversed by FGF1△HBS. In palmitate‐treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver‐specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high‐fat/high‐sucrose diet–induced hepatic steatosis. Moreover, FGF1△HBS improved high‐fat/high‐cholesterol diet–induced steatohepatitis and fibrosis in apolipoprotein E knockout mice.
Conclusions
These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4.</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>32965675</pmid><doi>10.1002/hep.31568</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6910-5933</orcidid><orcidid>https://orcid.org/0000-0002-9798-6237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-9139 |
ispartof | Hepatology (Baltimore, Md.), 2021-06, Vol.73 (6), p.2206-2222 |
issn | 0270-9139 1527-3350 |
language | eng |
recordid | cdi_proquest_journals_2542545680 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Adenosine Adenosine kinase AMP AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism Animals Antioxidants Apolipoprotein E Binding sites Cholesterol Diabetes Diabetes mellitus Diabetes Mellitus, Experimental Diet, High-Fat Fatty liver Fibroblast growth factor 1 Fibroblast Growth Factor 1 - pharmacology Fibroblast growth factor receptor 4 Fibroblast growth factor receptors Fibroblasts Fibrosis Growth factors Hep G2 Cells Heparin Hepatology High cholesterol diet High fat diet Humans Inflammation Kinases Lipid metabolism Lipid Metabolism - drug effects Lipids Liver Liver diseases Male Metabolism Mice Mice, Knockout Mice, Obese NF-E2-Related Factor 2 - metabolism Non-alcoholic Fatty Liver Disease - drug therapy Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - pathology NRF2 protein Nuclear transport Oxidative metabolism Oxidative Stress Palmitates - pharmacology Palmitic acid Phosphorylation Protein kinase Proteins Receptor, Fibroblast Growth Factor, Type 4 - genetics Receptor, Fibroblast Growth Factor, Type 4 - metabolism siRNA |
title | Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activating%20Adenosine%20Monophosphate%E2%80%93Activated%20Protein%20Kinase%20Mediates%20Fibroblast%20Growth%20Factor%201%20Protection%20From%20Nonalcoholic%20Fatty%20Liver%20Disease%20in%20Mice&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Lin,%20Qian&rft.date=2021-06&rft.volume=73&rft.issue=6&rft.spage=2206&rft.epage=2222&rft.pages=2206-2222&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.31568&rft_dat=%3Cproquest_cross%3E2542545680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542545680&rft_id=info:pmid/32965675&rfr_iscdi=true |