Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice

Background and Aims Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2021-06, Vol.73 (6), p.2206-2222
Hauptverfasser: Lin, Qian, Huang, Zhifeng, Cai, Genxiang, Fan, Xia, Yan, Xiaoqing, Liu, Zhengshuai, Zhao, Zehua, Li, Jingya, Li, Jia, Shi, Hongxue, Kong, Maiying, Zheng, Ming‐Hua, Conklin, Daniel J., Epstein, Paul N., Wintergerst, Kupper A., Mohammadi, Moosa, Cai, Lu, Li, Xiaokun, Li, Yu, Tan, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2222
container_issue 6
container_start_page 2206
container_title Hepatology (Baltimore, Md.)
container_volume 73
creator Lin, Qian
Huang, Zhifeng
Cai, Genxiang
Fan, Xia
Yan, Xiaoqing
Liu, Zhengshuai
Zhao, Zehua
Li, Jingya
Li, Jia
Shi, Hongxue
Kong, Maiying
Zheng, Ming‐Hua
Conklin, Daniel J.
Epstein, Paul N.
Wintergerst, Kupper A.
Mohammadi, Moosa
Cai, Lu
Li, Xiaokun
Li, Yu
Tan, Yi
description Background and Aims Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin‐binding sites (FGF1△HBS) against NAFLD. Approach and Results FGF1△HBS administration was effective in 9‐month‐old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45‐related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate–activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD‐like oxidative damage and lipid accumulation could be reversed by FGF1△HBS. In palmitate‐treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver‐specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high‐fat/high‐sucrose diet–induced hepatic steatosis. Moreover, FGF1△HBS improved high‐fat/high‐cholesterol diet–induced steatohepatitis and fibrosis in apolipoprotein E knockout mice. Conclusions These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4.
doi_str_mv 10.1002/hep.31568
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542545680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542545680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-5c8a5096536523165885792856a959e9023bcdef08ff9a21b841d0083a56eb7c3</originalsourceid><addsrcrecordid>eNp1kctO3DAUhi1EBcNlwQsgS6xYBHwZJ_ZyBAygDoVFu44c56QxysTB9oBmxzuw4_F4Ekwz7a7SkSwdff5k_z9CR5ScUULYeQvDGacil1toQgUrMs4F2UYTwgqSKcrVLtoL4ZEQoqZM7qBdzlQu8kJM0PvMRPuso-1_41kNvQu2B3zneje0LgytjvDx-raBoMYP3kWwPf5uex0SCLVN-4DntvKu6nSI-Nq7l9jiuTbReUzHK0ngejz3bol_uF53xrWusyZRMa7xwj6Dx5c2wJc06e-sgQP0rdFdgMPNuY9-za9-Xtxki_vr24vZIjNcSpkJI7Ug6T88F4zTXEgpCsWkyLUSChRhvDI1NEQ2jdKMVnJKa0Ik1yKHqjB8H52M3sG7pxWEWD66lU9vDCUT0zQpWJKo05Ey3oXgoSkHb5far0tKyq8WytRC-aeFxB5vjKtqCfU_8m_sCTgfgRfbwfr_pvLm6mFUfgJ51ZMW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542545680</pqid></control><display><type>article</type><title>Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lin, Qian ; Huang, Zhifeng ; Cai, Genxiang ; Fan, Xia ; Yan, Xiaoqing ; Liu, Zhengshuai ; Zhao, Zehua ; Li, Jingya ; Li, Jia ; Shi, Hongxue ; Kong, Maiying ; Zheng, Ming‐Hua ; Conklin, Daniel J. ; Epstein, Paul N. ; Wintergerst, Kupper A. ; Mohammadi, Moosa ; Cai, Lu ; Li, Xiaokun ; Li, Yu ; Tan, Yi</creator><creatorcontrib>Lin, Qian ; Huang, Zhifeng ; Cai, Genxiang ; Fan, Xia ; Yan, Xiaoqing ; Liu, Zhengshuai ; Zhao, Zehua ; Li, Jingya ; Li, Jia ; Shi, Hongxue ; Kong, Maiying ; Zheng, Ming‐Hua ; Conklin, Daniel J. ; Epstein, Paul N. ; Wintergerst, Kupper A. ; Mohammadi, Moosa ; Cai, Lu ; Li, Xiaokun ; Li, Yu ; Tan, Yi</creatorcontrib><description>Background and Aims Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin‐binding sites (FGF1△HBS) against NAFLD. Approach and Results FGF1△HBS administration was effective in 9‐month‐old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45‐related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate–activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD‐like oxidative damage and lipid accumulation could be reversed by FGF1△HBS. In palmitate‐treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver‐specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high‐fat/high‐sucrose diet–induced hepatic steatosis. Moreover, FGF1△HBS improved high‐fat/high‐cholesterol diet–induced steatohepatitis and fibrosis in apolipoprotein E knockout mice. Conclusions These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.31568</identifier><identifier>PMID: 32965675</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>Adenosine ; Adenosine kinase ; AMP ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; Animals ; Antioxidants ; Apolipoprotein E ; Binding sites ; Cholesterol ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental ; Diet, High-Fat ; Fatty liver ; Fibroblast growth factor 1 ; Fibroblast Growth Factor 1 - pharmacology ; Fibroblast growth factor receptor 4 ; Fibroblast growth factor receptors ; Fibroblasts ; Fibrosis ; Growth factors ; Hep G2 Cells ; Heparin ; Hepatology ; High cholesterol diet ; High fat diet ; Humans ; Inflammation ; Kinases ; Lipid metabolism ; Lipid Metabolism - drug effects ; Lipids ; Liver ; Liver diseases ; Male ; Metabolism ; Mice ; Mice, Knockout ; Mice, Obese ; NF-E2-Related Factor 2 - metabolism ; Non-alcoholic Fatty Liver Disease - drug therapy ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; NRF2 protein ; Nuclear transport ; Oxidative metabolism ; Oxidative Stress ; Palmitates - pharmacology ; Palmitic acid ; Phosphorylation ; Protein kinase ; Proteins ; Receptor, Fibroblast Growth Factor, Type 4 - genetics ; Receptor, Fibroblast Growth Factor, Type 4 - metabolism ; siRNA</subject><ispartof>Hepatology (Baltimore, Md.), 2021-06, Vol.73 (6), p.2206-2222</ispartof><rights>2020 by the American Association for the Study of Liver Diseases.</rights><rights>2021 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-5c8a5096536523165885792856a959e9023bcdef08ff9a21b841d0083a56eb7c3</citedby><cites>FETCH-LOGICAL-c3888-5c8a5096536523165885792856a959e9023bcdef08ff9a21b841d0083a56eb7c3</cites><orcidid>0000-0001-6910-5933 ; 0000-0002-9798-6237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.31568$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.31568$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32965675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Qian</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Cai, Genxiang</creatorcontrib><creatorcontrib>Fan, Xia</creatorcontrib><creatorcontrib>Yan, Xiaoqing</creatorcontrib><creatorcontrib>Liu, Zhengshuai</creatorcontrib><creatorcontrib>Zhao, Zehua</creatorcontrib><creatorcontrib>Li, Jingya</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Shi, Hongxue</creatorcontrib><creatorcontrib>Kong, Maiying</creatorcontrib><creatorcontrib>Zheng, Ming‐Hua</creatorcontrib><creatorcontrib>Conklin, Daniel J.</creatorcontrib><creatorcontrib>Epstein, Paul N.</creatorcontrib><creatorcontrib>Wintergerst, Kupper A.</creatorcontrib><creatorcontrib>Mohammadi, Moosa</creatorcontrib><creatorcontrib>Cai, Lu</creatorcontrib><creatorcontrib>Li, Xiaokun</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Tan, Yi</creatorcontrib><title>Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Background and Aims Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin‐binding sites (FGF1△HBS) against NAFLD. Approach and Results FGF1△HBS administration was effective in 9‐month‐old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45‐related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate–activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD‐like oxidative damage and lipid accumulation could be reversed by FGF1△HBS. In palmitate‐treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver‐specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high‐fat/high‐sucrose diet–induced hepatic steatosis. Moreover, FGF1△HBS improved high‐fat/high‐cholesterol diet–induced steatohepatitis and fibrosis in apolipoprotein E knockout mice. Conclusions These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4.</description><subject>Adenosine</subject><subject>Adenosine kinase</subject><subject>AMP</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Apolipoprotein E</subject><subject>Binding sites</subject><subject>Cholesterol</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental</subject><subject>Diet, High-Fat</subject><subject>Fatty liver</subject><subject>Fibroblast growth factor 1</subject><subject>Fibroblast Growth Factor 1 - pharmacology</subject><subject>Fibroblast growth factor receptor 4</subject><subject>Fibroblast growth factor receptors</subject><subject>Fibroblasts</subject><subject>Fibrosis</subject><subject>Growth factors</subject><subject>Hep G2 Cells</subject><subject>Heparin</subject><subject>Hepatology</subject><subject>High cholesterol diet</subject><subject>High fat diet</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Kinases</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Obese</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - drug therapy</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>NRF2 protein</subject><subject>Nuclear transport</subject><subject>Oxidative metabolism</subject><subject>Oxidative Stress</subject><subject>Palmitates - pharmacology</subject><subject>Palmitic acid</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Receptor, Fibroblast Growth Factor, Type 4 - genetics</subject><subject>Receptor, Fibroblast Growth Factor, Type 4 - metabolism</subject><subject>siRNA</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctO3DAUhi1EBcNlwQsgS6xYBHwZJ_ZyBAygDoVFu44c56QxysTB9oBmxzuw4_F4Ekwz7a7SkSwdff5k_z9CR5ScUULYeQvDGacil1toQgUrMs4F2UYTwgqSKcrVLtoL4ZEQoqZM7qBdzlQu8kJM0PvMRPuso-1_41kNvQu2B3zneje0LgytjvDx-raBoMYP3kWwPf5uex0SCLVN-4DntvKu6nSI-Nq7l9jiuTbReUzHK0ngejz3bol_uF53xrWusyZRMa7xwj6Dx5c2wJc06e-sgQP0rdFdgMPNuY9-za9-Xtxki_vr24vZIjNcSpkJI7Ug6T88F4zTXEgpCsWkyLUSChRhvDI1NEQ2jdKMVnJKa0Ik1yKHqjB8H52M3sG7pxWEWD66lU9vDCUT0zQpWJKo05Ey3oXgoSkHb5far0tKyq8WytRC-aeFxB5vjKtqCfU_8m_sCTgfgRfbwfr_pvLm6mFUfgJ51ZMW</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Lin, Qian</creator><creator>Huang, Zhifeng</creator><creator>Cai, Genxiang</creator><creator>Fan, Xia</creator><creator>Yan, Xiaoqing</creator><creator>Liu, Zhengshuai</creator><creator>Zhao, Zehua</creator><creator>Li, Jingya</creator><creator>Li, Jia</creator><creator>Shi, Hongxue</creator><creator>Kong, Maiying</creator><creator>Zheng, Ming‐Hua</creator><creator>Conklin, Daniel J.</creator><creator>Epstein, Paul N.</creator><creator>Wintergerst, Kupper A.</creator><creator>Mohammadi, Moosa</creator><creator>Cai, Lu</creator><creator>Li, Xiaokun</creator><creator>Li, Yu</creator><creator>Tan, Yi</creator><general>Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-6910-5933</orcidid><orcidid>https://orcid.org/0000-0002-9798-6237</orcidid></search><sort><creationdate>202106</creationdate><title>Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice</title><author>Lin, Qian ; Huang, Zhifeng ; Cai, Genxiang ; Fan, Xia ; Yan, Xiaoqing ; Liu, Zhengshuai ; Zhao, Zehua ; Li, Jingya ; Li, Jia ; Shi, Hongxue ; Kong, Maiying ; Zheng, Ming‐Hua ; Conklin, Daniel J. ; Epstein, Paul N. ; Wintergerst, Kupper A. ; Mohammadi, Moosa ; Cai, Lu ; Li, Xiaokun ; Li, Yu ; Tan, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-5c8a5096536523165885792856a959e9023bcdef08ff9a21b841d0083a56eb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine</topic><topic>Adenosine kinase</topic><topic>AMP</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Apolipoprotein E</topic><topic>Binding sites</topic><topic>Cholesterol</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental</topic><topic>Diet, High-Fat</topic><topic>Fatty liver</topic><topic>Fibroblast growth factor 1</topic><topic>Fibroblast Growth Factor 1 - pharmacology</topic><topic>Fibroblast growth factor receptor 4</topic><topic>Fibroblast growth factor receptors</topic><topic>Fibroblasts</topic><topic>Fibrosis</topic><topic>Growth factors</topic><topic>Hep G2 Cells</topic><topic>Heparin</topic><topic>Hepatology</topic><topic>High cholesterol diet</topic><topic>High fat diet</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Kinases</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Obese</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - drug therapy</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>NRF2 protein</topic><topic>Nuclear transport</topic><topic>Oxidative metabolism</topic><topic>Oxidative Stress</topic><topic>Palmitates - pharmacology</topic><topic>Palmitic acid</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Receptor, Fibroblast Growth Factor, Type 4 - genetics</topic><topic>Receptor, Fibroblast Growth Factor, Type 4 - metabolism</topic><topic>siRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Qian</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Cai, Genxiang</creatorcontrib><creatorcontrib>Fan, Xia</creatorcontrib><creatorcontrib>Yan, Xiaoqing</creatorcontrib><creatorcontrib>Liu, Zhengshuai</creatorcontrib><creatorcontrib>Zhao, Zehua</creatorcontrib><creatorcontrib>Li, Jingya</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Shi, Hongxue</creatorcontrib><creatorcontrib>Kong, Maiying</creatorcontrib><creatorcontrib>Zheng, Ming‐Hua</creatorcontrib><creatorcontrib>Conklin, Daniel J.</creatorcontrib><creatorcontrib>Epstein, Paul N.</creatorcontrib><creatorcontrib>Wintergerst, Kupper A.</creatorcontrib><creatorcontrib>Mohammadi, Moosa</creatorcontrib><creatorcontrib>Cai, Lu</creatorcontrib><creatorcontrib>Li, Xiaokun</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Tan, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Qian</au><au>Huang, Zhifeng</au><au>Cai, Genxiang</au><au>Fan, Xia</au><au>Yan, Xiaoqing</au><au>Liu, Zhengshuai</au><au>Zhao, Zehua</au><au>Li, Jingya</au><au>Li, Jia</au><au>Shi, Hongxue</au><au>Kong, Maiying</au><au>Zheng, Ming‐Hua</au><au>Conklin, Daniel J.</au><au>Epstein, Paul N.</au><au>Wintergerst, Kupper A.</au><au>Mohammadi, Moosa</au><au>Cai, Lu</au><au>Li, Xiaokun</au><au>Li, Yu</au><au>Tan, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2021-06</date><risdate>2021</risdate><volume>73</volume><issue>6</issue><spage>2206</spage><epage>2222</epage><pages>2206-2222</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Background and Aims Fibroblast growth factor (FGF) 1 demonstrated protection against nonalcoholic fatty liver disease (NAFLD) in type 2 diabetic and obese mice by an uncertain mechanism. This study investigated the therapeutic activity and mechanism of a nonmitogenic FGF1 variant carrying 3 substitutions of heparin‐binding sites (FGF1△HBS) against NAFLD. Approach and Results FGF1△HBS administration was effective in 9‐month‐old diabetic mice carrying a homozygous mutation in the leptin receptor gene (db/db) with NAFLD; liver weight, lipid deposition, and inflammation declined and liver injury decreased. FGF1△HBS reduced oxidative stress by stimulating nuclear translocation of nuclear erythroid 2 p45‐related factor 2 (Nrf2) and elevation of antioxidant protein expression. FGF1△HBS also inhibited activity and/or expression of lipogenic genes, coincident with phosphorylation of adenosine monophosphate–activated protein kinase (AMPK) and its substrates. Mechanistic studies on palmitate exposed hepatic cells demonstrated that NAFLD‐like oxidative damage and lipid accumulation could be reversed by FGF1△HBS. In palmitate‐treated hepatic cells, small interfering RNA (siRNA) knockdown of Nrf2 abolished only FGF1△HBS antioxidative actions but not improvement of lipid metabolism. In contrast, AMPK inhibition by pharmacological agent or siRNA abolished FGF1△HBS benefits on both oxidative stress and lipid metabolism that were FGF receptor (FGFR) 4 dependent. Further support of these in vitro findings is that liver‐specific AMPK knockout abolished therapeutic effects of FGF1△HBS against high‐fat/high‐sucrose diet–induced hepatic steatosis. Moreover, FGF1△HBS improved high‐fat/high‐cholesterol diet–induced steatohepatitis and fibrosis in apolipoprotein E knockout mice. Conclusions These findings indicate that FGF1△HBS is effective for preventing and reversing liver steatosis and steatohepatitis and acts by activation of AMPK through hepatocyte FGFR4.</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>32965675</pmid><doi>10.1002/hep.31568</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6910-5933</orcidid><orcidid>https://orcid.org/0000-0002-9798-6237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-9139
ispartof Hepatology (Baltimore, Md.), 2021-06, Vol.73 (6), p.2206-2222
issn 0270-9139
1527-3350
language eng
recordid cdi_proquest_journals_2542545680
source MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Adenosine
Adenosine kinase
AMP
AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
Animals
Antioxidants
Apolipoprotein E
Binding sites
Cholesterol
Diabetes
Diabetes mellitus
Diabetes Mellitus, Experimental
Diet, High-Fat
Fatty liver
Fibroblast growth factor 1
Fibroblast Growth Factor 1 - pharmacology
Fibroblast growth factor receptor 4
Fibroblast growth factor receptors
Fibroblasts
Fibrosis
Growth factors
Hep G2 Cells
Heparin
Hepatology
High cholesterol diet
High fat diet
Humans
Inflammation
Kinases
Lipid metabolism
Lipid Metabolism - drug effects
Lipids
Liver
Liver diseases
Male
Metabolism
Mice
Mice, Knockout
Mice, Obese
NF-E2-Related Factor 2 - metabolism
Non-alcoholic Fatty Liver Disease - drug therapy
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - pathology
NRF2 protein
Nuclear transport
Oxidative metabolism
Oxidative Stress
Palmitates - pharmacology
Palmitic acid
Phosphorylation
Protein kinase
Proteins
Receptor, Fibroblast Growth Factor, Type 4 - genetics
Receptor, Fibroblast Growth Factor, Type 4 - metabolism
siRNA
title Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activating%20Adenosine%20Monophosphate%E2%80%93Activated%20Protein%20Kinase%20Mediates%20Fibroblast%20Growth%20Factor%201%20Protection%20From%20Nonalcoholic%20Fatty%20Liver%20Disease%20in%20Mice&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Lin,%20Qian&rft.date=2021-06&rft.volume=73&rft.issue=6&rft.spage=2206&rft.epage=2222&rft.pages=2206-2222&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.31568&rft_dat=%3Cproquest_cross%3E2542545680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542545680&rft_id=info:pmid/32965675&rfr_iscdi=true