Chloroplast genome sequences of Carya illinoinensis from two distinct geographic populations

Pecan ( Carya illinoinensis ) is the most economically important member of the Carya genus and has been collected and evaluated across its broad geographic range in the process of crop improvement. In this study we obtained complete chloroplast genome sequences from two pecan genotypes, 87MX3-2.11 a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tree genetics & genomes 2020-08, Vol.16 (4), Article 48
Hauptverfasser: Wang, Xinwang, Rhein, Hormat Shadgou, Jenkins, Jerry, Schmutz, Jeremy, Grimwood, Jane, Grauke, L. J., Randall, Jennifer J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Tree genetics & genomes
container_volume 16
creator Wang, Xinwang
Rhein, Hormat Shadgou
Jenkins, Jerry
Schmutz, Jeremy
Grimwood, Jane
Grauke, L. J.
Randall, Jennifer J.
description Pecan ( Carya illinoinensis ) is the most economically important member of the Carya genus and has been collected and evaluated across its broad geographic range in the process of crop improvement. In this study we obtained complete chloroplast genome sequences from two pecan genotypes, 87MX3-2.11 and the ‘Lakota’ cultivar (160,545 and 160,819 bp in length, respectively). The chloroplast genome of C. illinoinensis maintains the conserved structure typical of Juglandaceae and other land plants and is a circular molecule that includes a large single-copy (LSC) and a small single-copy (SSC) region, separated by a pair of inverted repeats (IRa and IRb). There were 124 genes found on the 87MX3-2.11 chloroplast genome and 123 on ‘Lakota’ (including multiple copies of the same gene), with 108 and 107 unique genes, respectively (counting only one copy of each gene). Different genes are found among C. illinoinensis , C. sinensis , and Juglans chloroplast genomes. C. illinoinensis is missing rps16 gene and has fewer copies of some tRNA genes, with ‘Lakota’ lacking a start codon of rps12 gene, compared with other related species. The nucleotide divergence between the two pecan chloroplast genomes reflects the genetic diversity of geographically separated populations of the species. Genomic divergence was also confirmed by the phylogenetic relationship of 19 whole chloroplast genome sequences representing Juglandaceae taxa. The complete chloroplast genome sequences in this study provide a foundation for understanding the influences of geographical adaptation, gene flow, and horticultural trait inheritance, in order to develop functional genomic tools for regional selection and pecan breeding.
doi_str_mv 10.1007/s11295-020-01436-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542533209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542533209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-b52fca7bf853eb674b03488d00304983f209b3d233fa389ec24e9479559a610f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgevTmZzKTpQxqhYIb3QkhM03alGkyJlPEtzd1RHdd5RLO993LQeiawC0BqO4SIVSWBVAogHAmCjhBMyIIL_I3nP7NnJ6ji5S2ALwCIWbovdn0IYah12nEa-PDzuBkPvbGdybhYHGj45fGru-dD84bn1zCNoYdHj8DXrk0Ot8dkmEd9bBxHR7CsO_16IJPl-jM6j6Zq993jt4eH16bRbF8eXpu7pdFx3g1Fm1Jbaer1tYlM62oeAuM1_UKgAGXNbMUZMtWlDGrWS1NR7mRvJJlKbUgYNkc3Uy9Qwz59DSqbdhHn1cqWnJaMpYbjlIcZE04FyJTdKK6GFKKxqohul2WoAiog2s1uVbZtfpxrSCH2BRKGfZrE_-rj6S-AfDbgW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409814466</pqid></control><display><type>article</type><title>Chloroplast genome sequences of Carya illinoinensis from two distinct geographic populations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Xinwang ; Rhein, Hormat Shadgou ; Jenkins, Jerry ; Schmutz, Jeremy ; Grimwood, Jane ; Grauke, L. J. ; Randall, Jennifer J.</creator><creatorcontrib>Wang, Xinwang ; Rhein, Hormat Shadgou ; Jenkins, Jerry ; Schmutz, Jeremy ; Grimwood, Jane ; Grauke, L. J. ; Randall, Jennifer J.</creatorcontrib><description>Pecan ( Carya illinoinensis ) is the most economically important member of the Carya genus and has been collected and evaluated across its broad geographic range in the process of crop improvement. In this study we obtained complete chloroplast genome sequences from two pecan genotypes, 87MX3-2.11 and the ‘Lakota’ cultivar (160,545 and 160,819 bp in length, respectively). The chloroplast genome of C. illinoinensis maintains the conserved structure typical of Juglandaceae and other land plants and is a circular molecule that includes a large single-copy (LSC) and a small single-copy (SSC) region, separated by a pair of inverted repeats (IRa and IRb). There were 124 genes found on the 87MX3-2.11 chloroplast genome and 123 on ‘Lakota’ (including multiple copies of the same gene), with 108 and 107 unique genes, respectively (counting only one copy of each gene). Different genes are found among C. illinoinensis , C. sinensis , and Juglans chloroplast genomes. C. illinoinensis is missing rps16 gene and has fewer copies of some tRNA genes, with ‘Lakota’ lacking a start codon of rps12 gene, compared with other related species. The nucleotide divergence between the two pecan chloroplast genomes reflects the genetic diversity of geographically separated populations of the species. Genomic divergence was also confirmed by the phylogenetic relationship of 19 whole chloroplast genome sequences representing Juglandaceae taxa. The complete chloroplast genome sequences in this study provide a foundation for understanding the influences of geographical adaptation, gene flow, and horticultural trait inheritance, in order to develop functional genomic tools for regional selection and pecan breeding.</description><identifier>ISSN: 1614-2942</identifier><identifier>EISSN: 1614-2950</identifier><identifier>DOI: 10.1007/s11295-020-01436-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biotechnology ; Carya illinoinensis ; Chloroplasts ; Crop improvement ; Cultivars ; Divergence ; Economic importance ; Forestry ; Gene flow ; Gene sequencing ; Genes ; Genetic diversity ; Genomes ; Genomics ; Genotypes ; Heredity ; Juglandaceae ; Life Sciences ; Nucleotides ; Original Article ; Phylogeny ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Populations ; Regional development ; Rps12 gene ; Tree Biology ; tRNA</subject><ispartof>Tree genetics &amp; genomes, 2020-08, Vol.16 (4), Article 48</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-b52fca7bf853eb674b03488d00304983f209b3d233fa389ec24e9479559a610f3</citedby><cites>FETCH-LOGICAL-c347t-b52fca7bf853eb674b03488d00304983f209b3d233fa389ec24e9479559a610f3</cites><orcidid>0000-0002-7943-3997 ; 0000-0002-8356-8325 ; 0000-0001-9878-6213 ; 0000-0001-8062-9172 ; 0000-0003-0064-719X ; 0000-0002-5679-0764 ; 0000-0002-1901-5814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11295-020-01436-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11295-020-01436-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Xinwang</creatorcontrib><creatorcontrib>Rhein, Hormat Shadgou</creatorcontrib><creatorcontrib>Jenkins, Jerry</creatorcontrib><creatorcontrib>Schmutz, Jeremy</creatorcontrib><creatorcontrib>Grimwood, Jane</creatorcontrib><creatorcontrib>Grauke, L. J.</creatorcontrib><creatorcontrib>Randall, Jennifer J.</creatorcontrib><title>Chloroplast genome sequences of Carya illinoinensis from two distinct geographic populations</title><title>Tree genetics &amp; genomes</title><addtitle>Tree Genetics &amp; Genomes</addtitle><description>Pecan ( Carya illinoinensis ) is the most economically important member of the Carya genus and has been collected and evaluated across its broad geographic range in the process of crop improvement. In this study we obtained complete chloroplast genome sequences from two pecan genotypes, 87MX3-2.11 and the ‘Lakota’ cultivar (160,545 and 160,819 bp in length, respectively). The chloroplast genome of C. illinoinensis maintains the conserved structure typical of Juglandaceae and other land plants and is a circular molecule that includes a large single-copy (LSC) and a small single-copy (SSC) region, separated by a pair of inverted repeats (IRa and IRb). There were 124 genes found on the 87MX3-2.11 chloroplast genome and 123 on ‘Lakota’ (including multiple copies of the same gene), with 108 and 107 unique genes, respectively (counting only one copy of each gene). Different genes are found among C. illinoinensis , C. sinensis , and Juglans chloroplast genomes. C. illinoinensis is missing rps16 gene and has fewer copies of some tRNA genes, with ‘Lakota’ lacking a start codon of rps12 gene, compared with other related species. The nucleotide divergence between the two pecan chloroplast genomes reflects the genetic diversity of geographically separated populations of the species. Genomic divergence was also confirmed by the phylogenetic relationship of 19 whole chloroplast genome sequences representing Juglandaceae taxa. The complete chloroplast genome sequences in this study provide a foundation for understanding the influences of geographical adaptation, gene flow, and horticultural trait inheritance, in order to develop functional genomic tools for regional selection and pecan breeding.</description><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carya illinoinensis</subject><subject>Chloroplasts</subject><subject>Crop improvement</subject><subject>Cultivars</subject><subject>Divergence</subject><subject>Economic importance</subject><subject>Forestry</subject><subject>Gene flow</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Heredity</subject><subject>Juglandaceae</subject><subject>Life Sciences</subject><subject>Nucleotides</subject><subject>Original Article</subject><subject>Phylogeny</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Populations</subject><subject>Regional development</subject><subject>Rps12 gene</subject><subject>Tree Biology</subject><subject>tRNA</subject><issn>1614-2942</issn><issn>1614-2950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgevTmZzKTpQxqhYIb3QkhM03alGkyJlPEtzd1RHdd5RLO993LQeiawC0BqO4SIVSWBVAogHAmCjhBMyIIL_I3nP7NnJ6ji5S2ALwCIWbovdn0IYah12nEa-PDzuBkPvbGdybhYHGj45fGru-dD84bn1zCNoYdHj8DXrk0Ot8dkmEd9bBxHR7CsO_16IJPl-jM6j6Zq993jt4eH16bRbF8eXpu7pdFx3g1Fm1Jbaer1tYlM62oeAuM1_UKgAGXNbMUZMtWlDGrWS1NR7mRvJJlKbUgYNkc3Uy9Qwz59DSqbdhHn1cqWnJaMpYbjlIcZE04FyJTdKK6GFKKxqohul2WoAiog2s1uVbZtfpxrSCH2BRKGfZrE_-rj6S-AfDbgW4</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wang, Xinwang</creator><creator>Rhein, Hormat Shadgou</creator><creator>Jenkins, Jerry</creator><creator>Schmutz, Jeremy</creator><creator>Grimwood, Jane</creator><creator>Grauke, L. J.</creator><creator>Randall, Jennifer J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-7943-3997</orcidid><orcidid>https://orcid.org/0000-0002-8356-8325</orcidid><orcidid>https://orcid.org/0000-0001-9878-6213</orcidid><orcidid>https://orcid.org/0000-0001-8062-9172</orcidid><orcidid>https://orcid.org/0000-0003-0064-719X</orcidid><orcidid>https://orcid.org/0000-0002-5679-0764</orcidid><orcidid>https://orcid.org/0000-0002-1901-5814</orcidid></search><sort><creationdate>20200801</creationdate><title>Chloroplast genome sequences of Carya illinoinensis from two distinct geographic populations</title><author>Wang, Xinwang ; Rhein, Hormat Shadgou ; Jenkins, Jerry ; Schmutz, Jeremy ; Grimwood, Jane ; Grauke, L. J. ; Randall, Jennifer J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-b52fca7bf853eb674b03488d00304983f209b3d233fa389ec24e9479559a610f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carya illinoinensis</topic><topic>Chloroplasts</topic><topic>Crop improvement</topic><topic>Cultivars</topic><topic>Divergence</topic><topic>Economic importance</topic><topic>Forestry</topic><topic>Gene flow</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Heredity</topic><topic>Juglandaceae</topic><topic>Life Sciences</topic><topic>Nucleotides</topic><topic>Original Article</topic><topic>Phylogeny</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Populations</topic><topic>Regional development</topic><topic>Rps12 gene</topic><topic>Tree Biology</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinwang</creatorcontrib><creatorcontrib>Rhein, Hormat Shadgou</creatorcontrib><creatorcontrib>Jenkins, Jerry</creatorcontrib><creatorcontrib>Schmutz, Jeremy</creatorcontrib><creatorcontrib>Grimwood, Jane</creatorcontrib><creatorcontrib>Grauke, L. J.</creatorcontrib><creatorcontrib>Randall, Jennifer J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Tree genetics &amp; genomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinwang</au><au>Rhein, Hormat Shadgou</au><au>Jenkins, Jerry</au><au>Schmutz, Jeremy</au><au>Grimwood, Jane</au><au>Grauke, L. J.</au><au>Randall, Jennifer J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chloroplast genome sequences of Carya illinoinensis from two distinct geographic populations</atitle><jtitle>Tree genetics &amp; genomes</jtitle><stitle>Tree Genetics &amp; Genomes</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><artnum>48</artnum><issn>1614-2942</issn><eissn>1614-2950</eissn><abstract>Pecan ( Carya illinoinensis ) is the most economically important member of the Carya genus and has been collected and evaluated across its broad geographic range in the process of crop improvement. In this study we obtained complete chloroplast genome sequences from two pecan genotypes, 87MX3-2.11 and the ‘Lakota’ cultivar (160,545 and 160,819 bp in length, respectively). The chloroplast genome of C. illinoinensis maintains the conserved structure typical of Juglandaceae and other land plants and is a circular molecule that includes a large single-copy (LSC) and a small single-copy (SSC) region, separated by a pair of inverted repeats (IRa and IRb). There were 124 genes found on the 87MX3-2.11 chloroplast genome and 123 on ‘Lakota’ (including multiple copies of the same gene), with 108 and 107 unique genes, respectively (counting only one copy of each gene). Different genes are found among C. illinoinensis , C. sinensis , and Juglans chloroplast genomes. C. illinoinensis is missing rps16 gene and has fewer copies of some tRNA genes, with ‘Lakota’ lacking a start codon of rps12 gene, compared with other related species. The nucleotide divergence between the two pecan chloroplast genomes reflects the genetic diversity of geographically separated populations of the species. Genomic divergence was also confirmed by the phylogenetic relationship of 19 whole chloroplast genome sequences representing Juglandaceae taxa. The complete chloroplast genome sequences in this study provide a foundation for understanding the influences of geographical adaptation, gene flow, and horticultural trait inheritance, in order to develop functional genomic tools for regional selection and pecan breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11295-020-01436-0</doi><orcidid>https://orcid.org/0000-0002-7943-3997</orcidid><orcidid>https://orcid.org/0000-0002-8356-8325</orcidid><orcidid>https://orcid.org/0000-0001-9878-6213</orcidid><orcidid>https://orcid.org/0000-0001-8062-9172</orcidid><orcidid>https://orcid.org/0000-0003-0064-719X</orcidid><orcidid>https://orcid.org/0000-0002-5679-0764</orcidid><orcidid>https://orcid.org/0000-0002-1901-5814</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-2942
ispartof Tree genetics & genomes, 2020-08, Vol.16 (4), Article 48
issn 1614-2942
1614-2950
language eng
recordid cdi_proquest_journals_2542533209
source SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biotechnology
Carya illinoinensis
Chloroplasts
Crop improvement
Cultivars
Divergence
Economic importance
Forestry
Gene flow
Gene sequencing
Genes
Genetic diversity
Genomes
Genomics
Genotypes
Heredity
Juglandaceae
Life Sciences
Nucleotides
Original Article
Phylogeny
Plant breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Populations
Regional development
Rps12 gene
Tree Biology
tRNA
title Chloroplast genome sequences of Carya illinoinensis from two distinct geographic populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chloroplast%20genome%20sequences%20of%20Carya%20illinoinensis%20from%20two%20distinct%20geographic%20populations&rft.jtitle=Tree%20genetics%20&%20genomes&rft.au=Wang,%20Xinwang&rft.date=2020-08-01&rft.volume=16&rft.issue=4&rft.artnum=48&rft.issn=1614-2942&rft.eissn=1614-2950&rft_id=info:doi/10.1007/s11295-020-01436-0&rft_dat=%3Cproquest_cross%3E2542533209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409814466&rft_id=info:pmid/&rfr_iscdi=true