Optimal Flow of MVDC Shipboard Microgrids With Hybrid Storage Enhanced With Capacitive and Resistive Droop Controllers

Hybrid storage system composed of battery energy storage systems (BESSs) and supercapacitors is a promising solution to mitigate the high frequency power fluctuations of pulsed power loads (PPLs) in medium voltage DC (MVDC) shipboard power systems. Due to the presence of multiple storage units, a po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2021-07, Vol.36 (4), p.3728-3739
1. Verfasser: Khazaei, Javad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3739
container_issue 4
container_start_page 3728
container_title IEEE transactions on power systems
container_volume 36
creator Khazaei, Javad
description Hybrid storage system composed of battery energy storage systems (BESSs) and supercapacitors is a promising solution to mitigate the high frequency power fluctuations of pulsed power loads (PPLs) in medium voltage DC (MVDC) shipboard power systems. Due to the presence of multiple storage units, a power sharing algorithm needs to be considered within the energy management system (EMS) in the shipboard power system. In this paper, an optimal power flow problem is formulated for MVDC shipboard power systems with hybrid energy storage systems. Battery energy storage systems (BESSs) and conventional generation units are enhanced with virtual resistive droop controllers to share the steady-state power fluctuations. Supercapacitors are enhanced with virtual capacitive droop controllers to share the high frequency fluctuations in the load. The optimal flow accounts for minimizing the operational cost of the generation units in the shipboard power system considering the constraints of network, load balance, voltage profile, and power/energy limits. Second-order cone programming (SOCP) relaxation is used to approximate the nonconvexity of the optimal flow formulation and necessary conditions for global optimality of the solution are discussed. Results confirm the effectiveness of the proposed formulation in load support and managing the energy between storage units.
doi_str_mv 10.1109/TPWRS.2021.3049343
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2542502506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9314261</ieee_id><sourcerecordid>2542502506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-7d090a0441bbd0f93a8222ce6f994db5a32a1e3de526ec5951b3c1d6cdbdbcff3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QG8CXnfmo-maS-k2J2xMtukuS5qkW0ZtatJN9u_NPhAOHA7v-57DeQB4xKiHMeIvy4_VfNEjiOAeRTGnMb0CHcxYGqGkz69BB6Upi1LO0C24836LEEqC0AH7WdOab1HBUWV_oS3h9GuQwcXGNIUVTsGpkc6unVEerky7geNDEQa4aK0Taw2H9UbUUquzmIlGSNOavYaiVnCuvfGnaeCsbWBm69bZqtLO34ObUlReP1x6F3yOhstsHE1mb-_Z6ySSlPI26ivEkUBxjItCoZJTkRJCpE5KzmNVMEGJwJoqzUiiJeMMF1RilUhVqEKWJe2C5_PextmfnfZtvrU7V4eTOWExYShUElzk7Aq_eu90mTcuQHGHHKP8yDc_8c2PfPML3xB6OoeM1vo_wCmOSYLpH46beKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542502506</pqid></control><display><type>article</type><title>Optimal Flow of MVDC Shipboard Microgrids With Hybrid Storage Enhanced With Capacitive and Resistive Droop Controllers</title><source>IEEE Electronic Library (IEL)</source><creator>Khazaei, Javad</creator><creatorcontrib>Khazaei, Javad</creatorcontrib><description>Hybrid storage system composed of battery energy storage systems (BESSs) and supercapacitors is a promising solution to mitigate the high frequency power fluctuations of pulsed power loads (PPLs) in medium voltage DC (MVDC) shipboard power systems. Due to the presence of multiple storage units, a power sharing algorithm needs to be considered within the energy management system (EMS) in the shipboard power system. In this paper, an optimal power flow problem is formulated for MVDC shipboard power systems with hybrid energy storage systems. Battery energy storage systems (BESSs) and conventional generation units are enhanced with virtual resistive droop controllers to share the steady-state power fluctuations. Supercapacitors are enhanced with virtual capacitive droop controllers to share the high frequency fluctuations in the load. The optimal flow accounts for minimizing the operational cost of the generation units in the shipboard power system considering the constraints of network, load balance, voltage profile, and power/energy limits. Second-order cone programming (SOCP) relaxation is used to approximate the nonconvexity of the optimal flow formulation and necessary conditions for global optimality of the solution are discussed. Results confirm the effectiveness of the proposed formulation in load support and managing the energy between storage units.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2021.3049343</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Batteries ; Controllers ; Distributed generation ; Electric potential ; Electrical loads ; Energy management ; Energy storage ; High frequencies ; Hybrid power systems ; Hybrid systems ; Marine vehicles ; Medium voltage ; medium voltage DC ; Optimal flow ; Optimization ; Power flow ; Power system stability ; shipboard power system ; Storage systems ; Storage units ; Supercapacitors ; virtual capacitive droop ; virtual resistive droop ; Voltage</subject><ispartof>IEEE transactions on power systems, 2021-07, Vol.36 (4), p.3728-3739</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-7d090a0441bbd0f93a8222ce6f994db5a32a1e3de526ec5951b3c1d6cdbdbcff3</citedby><cites>FETCH-LOGICAL-c339t-7d090a0441bbd0f93a8222ce6f994db5a32a1e3de526ec5951b3c1d6cdbdbcff3</cites><orcidid>0000-0001-5595-7641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9314261$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9314261$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khazaei, Javad</creatorcontrib><title>Optimal Flow of MVDC Shipboard Microgrids With Hybrid Storage Enhanced With Capacitive and Resistive Droop Controllers</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Hybrid storage system composed of battery energy storage systems (BESSs) and supercapacitors is a promising solution to mitigate the high frequency power fluctuations of pulsed power loads (PPLs) in medium voltage DC (MVDC) shipboard power systems. Due to the presence of multiple storage units, a power sharing algorithm needs to be considered within the energy management system (EMS) in the shipboard power system. In this paper, an optimal power flow problem is formulated for MVDC shipboard power systems with hybrid energy storage systems. Battery energy storage systems (BESSs) and conventional generation units are enhanced with virtual resistive droop controllers to share the steady-state power fluctuations. Supercapacitors are enhanced with virtual capacitive droop controllers to share the high frequency fluctuations in the load. The optimal flow accounts for minimizing the operational cost of the generation units in the shipboard power system considering the constraints of network, load balance, voltage profile, and power/energy limits. Second-order cone programming (SOCP) relaxation is used to approximate the nonconvexity of the optimal flow formulation and necessary conditions for global optimality of the solution are discussed. Results confirm the effectiveness of the proposed formulation in load support and managing the energy between storage units.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Controllers</subject><subject>Distributed generation</subject><subject>Electric potential</subject><subject>Electrical loads</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>High frequencies</subject><subject>Hybrid power systems</subject><subject>Hybrid systems</subject><subject>Marine vehicles</subject><subject>Medium voltage</subject><subject>medium voltage DC</subject><subject>Optimal flow</subject><subject>Optimization</subject><subject>Power flow</subject><subject>Power system stability</subject><subject>shipboard power system</subject><subject>Storage systems</subject><subject>Storage units</subject><subject>Supercapacitors</subject><subject>virtual capacitive droop</subject><subject>virtual resistive droop</subject><subject>Voltage</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKd_QG8CXnfmo-maS-k2J2xMtukuS5qkW0ZtatJN9u_NPhAOHA7v-57DeQB4xKiHMeIvy4_VfNEjiOAeRTGnMb0CHcxYGqGkz69BB6Upi1LO0C24836LEEqC0AH7WdOab1HBUWV_oS3h9GuQwcXGNIUVTsGpkc6unVEerky7geNDEQa4aK0Taw2H9UbUUquzmIlGSNOavYaiVnCuvfGnaeCsbWBm69bZqtLO34ObUlReP1x6F3yOhstsHE1mb-_Z6ySSlPI26ivEkUBxjItCoZJTkRJCpE5KzmNVMEGJwJoqzUiiJeMMF1RilUhVqEKWJe2C5_PextmfnfZtvrU7V4eTOWExYShUElzk7Aq_eu90mTcuQHGHHKP8yDc_8c2PfPML3xB6OoeM1vo_wCmOSYLpH46beKY</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Khazaei, Javad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5595-7641</orcidid></search><sort><creationdate>202107</creationdate><title>Optimal Flow of MVDC Shipboard Microgrids With Hybrid Storage Enhanced With Capacitive and Resistive Droop Controllers</title><author>Khazaei, Javad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-7d090a0441bbd0f93a8222ce6f994db5a32a1e3de526ec5951b3c1d6cdbdbcff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Controllers</topic><topic>Distributed generation</topic><topic>Electric potential</topic><topic>Electrical loads</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>High frequencies</topic><topic>Hybrid power systems</topic><topic>Hybrid systems</topic><topic>Marine vehicles</topic><topic>Medium voltage</topic><topic>medium voltage DC</topic><topic>Optimal flow</topic><topic>Optimization</topic><topic>Power flow</topic><topic>Power system stability</topic><topic>shipboard power system</topic><topic>Storage systems</topic><topic>Storage units</topic><topic>Supercapacitors</topic><topic>virtual capacitive droop</topic><topic>virtual resistive droop</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khazaei, Javad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khazaei, Javad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Flow of MVDC Shipboard Microgrids With Hybrid Storage Enhanced With Capacitive and Resistive Droop Controllers</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2021-07</date><risdate>2021</risdate><volume>36</volume><issue>4</issue><spage>3728</spage><epage>3739</epage><pages>3728-3739</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Hybrid storage system composed of battery energy storage systems (BESSs) and supercapacitors is a promising solution to mitigate the high frequency power fluctuations of pulsed power loads (PPLs) in medium voltage DC (MVDC) shipboard power systems. Due to the presence of multiple storage units, a power sharing algorithm needs to be considered within the energy management system (EMS) in the shipboard power system. In this paper, an optimal power flow problem is formulated for MVDC shipboard power systems with hybrid energy storage systems. Battery energy storage systems (BESSs) and conventional generation units are enhanced with virtual resistive droop controllers to share the steady-state power fluctuations. Supercapacitors are enhanced with virtual capacitive droop controllers to share the high frequency fluctuations in the load. The optimal flow accounts for minimizing the operational cost of the generation units in the shipboard power system considering the constraints of network, load balance, voltage profile, and power/energy limits. Second-order cone programming (SOCP) relaxation is used to approximate the nonconvexity of the optimal flow formulation and necessary conditions for global optimality of the solution are discussed. Results confirm the effectiveness of the proposed formulation in load support and managing the energy between storage units.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2021.3049343</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5595-7641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2021-07, Vol.36 (4), p.3728-3739
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2542502506
source IEEE Electronic Library (IEL)
subjects Algorithms
Batteries
Controllers
Distributed generation
Electric potential
Electrical loads
Energy management
Energy storage
High frequencies
Hybrid power systems
Hybrid systems
Marine vehicles
Medium voltage
medium voltage DC
Optimal flow
Optimization
Power flow
Power system stability
shipboard power system
Storage systems
Storage units
Supercapacitors
virtual capacitive droop
virtual resistive droop
Voltage
title Optimal Flow of MVDC Shipboard Microgrids With Hybrid Storage Enhanced With Capacitive and Resistive Droop Controllers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Flow%20of%20MVDC%20Shipboard%20Microgrids%20With%20Hybrid%20Storage%20Enhanced%20With%20Capacitive%20and%20Resistive%20Droop%20Controllers&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Khazaei,%20Javad&rft.date=2021-07&rft.volume=36&rft.issue=4&rft.spage=3728&rft.epage=3739&rft.pages=3728-3739&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2021.3049343&rft_dat=%3Cproquest_RIE%3E2542502506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542502506&rft_id=info:pmid/&rft_ieee_id=9314261&rfr_iscdi=true