High-Quality Train Data Generation for Deep Learning-Based Web Page Classification Models

The current deep learning models detecting relevant web pages show low accuracy because of the poor quality of the training data. In this paper, we propose a novel algorithm to automatically generate high-quality training data based on the frequency of the document including the entity of interest....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.85240-85254
Hauptverfasser: Kim, Jeong-Jae, On, Byung-Won, Lee, Ingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85254
container_issue
container_start_page 85240
container_title IEEE access
container_volume 9
creator Kim, Jeong-Jae
On, Byung-Won
Lee, Ingyu
description The current deep learning models detecting relevant web pages show low accuracy because of the poor quality of the training data. In this paper, we propose a novel algorithm to automatically generate high-quality training data based on the frequency of the document including the entity of interest. Our experimental results with movies and cellphones data sets show that the average F_{1} -score of the deep learning models (FNN, CNN, Bi-LSTM, and SeqGAN) trained with our proposed algorithm shows up to 0.9992 in F_{1} -score.
doi_str_mv 10.1109/ACCESS.2021.3086586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542501754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9446993</ieee_id><doaj_id>oai_doaj_org_article_fba0dcfad7c7436e978539ce34a73a80</doaj_id><sourcerecordid>2542501754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b69e64ff8502e7ee7090b07206f07f4bd996f0a1f9d4d8c0b4e55b52f26d9b173</originalsourceid><addsrcrecordid>eNpNUU1r3DAUNCWFhnR_QS6Cnr3Rt6xj6qRJYEtaNqX0JJ6tp60W19pK3kP-fZw4hLzLG4aZeQ-mqs4ZXTNG7cVl215vt2tOOVsL2mjV6A_VKWfa1kIJffIOf6pWpezpPM1MKXNa_bmNu7_1zyMMcXokDxniSK5gAnKDI2aYYhpJSJlcIR7IBiGPcdzVX6GgJ7-xIz9gh6QdoJQYYr_ovyePQ_lcfQwwFFy97rPq17frh_a23tzf3LWXm7qXtJnqTlvUMoRGUY4G0VBLO2o41YGaIDtv7YyABeulb3raSVSqUzxw7W3HjDir7pZcn2DvDjn-g_zoEkT3QqS8c5Cn2A_oQgfU9wG86Y0UGq1plLA9CglGQEPnrC9L1iGn_0csk9unYx7n9x1XkivKjJKzSiyqPqdSMoa3q4y650rcUol7rsS9VjK7zhdXRMQ3h5VSWyvEE6olhpM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542501754</pqid></control><display><type>article</type><title>High-Quality Train Data Generation for Deep Learning-Based Web Page Classification Models</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Jeong-Jae ; On, Byung-Won ; Lee, Ingyu</creator><creatorcontrib>Kim, Jeong-Jae ; On, Byung-Won ; Lee, Ingyu</creatorcontrib><description><![CDATA[The current deep learning models detecting relevant web pages show low accuracy because of the poor quality of the training data. In this paper, we propose a novel algorithm to automatically generate high-quality training data based on the frequency of the document including the entity of interest. Our experimental results with movies and cellphones data sets show that the average <inline-formula> <tex-math notation="LaTeX">F_{1} </tex-math></inline-formula>-score of the deep learning models (FNN, CNN, Bi-LSTM, and SeqGAN) trained with our proposed algorithm shows up to 0.9992 in <inline-formula> <tex-math notation="LaTeX">F_{1} </tex-math></inline-formula>-score.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3086586</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; automatic labelling ; Complexity theory ; Data mining ; Data models ; Deep learning ; Machine learning ; Text classification ; Training ; Training data ; Web pages ; Websites</subject><ispartof>IEEE access, 2021, Vol.9, p.85240-85254</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b69e64ff8502e7ee7090b07206f07f4bd996f0a1f9d4d8c0b4e55b52f26d9b173</citedby><cites>FETCH-LOGICAL-c408t-b69e64ff8502e7ee7090b07206f07f4bd996f0a1f9d4d8c0b4e55b52f26d9b173</cites><orcidid>0000-0002-9629-6816 ; 0000-0001-6929-3188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9446993$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Kim, Jeong-Jae</creatorcontrib><creatorcontrib>On, Byung-Won</creatorcontrib><creatorcontrib>Lee, Ingyu</creatorcontrib><title>High-Quality Train Data Generation for Deep Learning-Based Web Page Classification Models</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[The current deep learning models detecting relevant web pages show low accuracy because of the poor quality of the training data. In this paper, we propose a novel algorithm to automatically generate high-quality training data based on the frequency of the document including the entity of interest. Our experimental results with movies and cellphones data sets show that the average <inline-formula> <tex-math notation="LaTeX">F_{1} </tex-math></inline-formula>-score of the deep learning models (FNN, CNN, Bi-LSTM, and SeqGAN) trained with our proposed algorithm shows up to 0.9992 in <inline-formula> <tex-math notation="LaTeX">F_{1} </tex-math></inline-formula>-score.]]></description><subject>Algorithms</subject><subject>automatic labelling</subject><subject>Complexity theory</subject><subject>Data mining</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Text classification</subject><subject>Training</subject><subject>Training data</subject><subject>Web pages</subject><subject>Websites</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAUNCWFhnR_QS6Cnr3Rt6xj6qRJYEtaNqX0JJ6tp60W19pK3kP-fZw4hLzLG4aZeQ-mqs4ZXTNG7cVl215vt2tOOVsL2mjV6A_VKWfa1kIJffIOf6pWpezpPM1MKXNa_bmNu7_1zyMMcXokDxniSK5gAnKDI2aYYhpJSJlcIR7IBiGPcdzVX6GgJ7-xIz9gh6QdoJQYYr_ovyePQ_lcfQwwFFy97rPq17frh_a23tzf3LWXm7qXtJnqTlvUMoRGUY4G0VBLO2o41YGaIDtv7YyABeulb3raSVSqUzxw7W3HjDir7pZcn2DvDjn-g_zoEkT3QqS8c5Cn2A_oQgfU9wG86Y0UGq1plLA9CglGQEPnrC9L1iGn_0csk9unYx7n9x1XkivKjJKzSiyqPqdSMoa3q4y650rcUol7rsS9VjK7zhdXRMQ3h5VSWyvEE6olhpM</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kim, Jeong-Jae</creator><creator>On, Byung-Won</creator><creator>Lee, Ingyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9629-6816</orcidid><orcidid>https://orcid.org/0000-0001-6929-3188</orcidid></search><sort><creationdate>2021</creationdate><title>High-Quality Train Data Generation for Deep Learning-Based Web Page Classification Models</title><author>Kim, Jeong-Jae ; On, Byung-Won ; Lee, Ingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b69e64ff8502e7ee7090b07206f07f4bd996f0a1f9d4d8c0b4e55b52f26d9b173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>automatic labelling</topic><topic>Complexity theory</topic><topic>Data mining</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Text classification</topic><topic>Training</topic><topic>Training data</topic><topic>Web pages</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jeong-Jae</creatorcontrib><creatorcontrib>On, Byung-Won</creatorcontrib><creatorcontrib>Lee, Ingyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jeong-Jae</au><au>On, Byung-Won</au><au>Lee, Ingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Quality Train Data Generation for Deep Learning-Based Web Page Classification Models</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>85240</spage><epage>85254</epage><pages>85240-85254</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[The current deep learning models detecting relevant web pages show low accuracy because of the poor quality of the training data. In this paper, we propose a novel algorithm to automatically generate high-quality training data based on the frequency of the document including the entity of interest. Our experimental results with movies and cellphones data sets show that the average <inline-formula> <tex-math notation="LaTeX">F_{1} </tex-math></inline-formula>-score of the deep learning models (FNN, CNN, Bi-LSTM, and SeqGAN) trained with our proposed algorithm shows up to 0.9992 in <inline-formula> <tex-math notation="LaTeX">F_{1} </tex-math></inline-formula>-score.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3086586</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9629-6816</orcidid><orcidid>https://orcid.org/0000-0001-6929-3188</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.85240-85254
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2542501754
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
automatic labelling
Complexity theory
Data mining
Data models
Deep learning
Machine learning
Text classification
Training
Training data
Web pages
Websites
title High-Quality Train Data Generation for Deep Learning-Based Web Page Classification Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Quality%20Train%20Data%20Generation%20for%20Deep%20Learning-Based%20Web%20Page%20Classification%20Models&rft.jtitle=IEEE%20access&rft.au=Kim,%20Jeong-Jae&rft.date=2021&rft.volume=9&rft.spage=85240&rft.epage=85254&rft.pages=85240-85254&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3086586&rft_dat=%3Cproquest_cross%3E2542501754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542501754&rft_id=info:pmid/&rft_ieee_id=9446993&rft_doaj_id=oai_doaj_org_article_fba0dcfad7c7436e978539ce34a73a80&rfr_iscdi=true