Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems
This paper proposes a fractional-order sliding mode controller (FOSMC) for fixed-time stability of multimachine power systems. Fractional calculus has been applied in sliding mode control (SMC) to design FOSMC which can better suppress the chattering phenomenon than the traditional integer-order SMC...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2021-07, Vol.36 (4), p.2866-2876 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2876 |
---|---|
container_issue | 4 |
container_start_page | 2866 |
container_title | IEEE transactions on power systems |
container_volume | 36 |
creator | Huang, Sunhua Xiong, Linyun Wang, Jie Li, Penghan Wang, Ziqiang Ma, Meiling |
description | This paper proposes a fractional-order sliding mode controller (FOSMC) for fixed-time stability of multimachine power systems. Fractional calculus has been applied in sliding mode control (SMC) to design FOSMC which can better suppress the chattering phenomenon than the traditional integer-order SMC. Hence, a FOSMC is proposed to regulate the excitation of synchronous generators to improve the transient stability of the power system. In addition, the FOSMC can maintain the multimachine power systems stabilization in an upper bound and measurable convergence time independent of the initial operating conditions of the power system. The Lyapunov function is implemented to demonstrate the stability of multimachine power systems under the FOSMC, and the upper bound convergence time of the power system is generally estimated. The New England 10-machine 39-bus power system is taken into simulation to test the effectiveness and superior performances of the FOSMC than the existing control methods under different operating conditions. Meanwhile, the FOSMC with different orders are presented to verify that the FOSMC can better restrain the chattering phenomenon than traditional integer-order SMC. Simulation results show that the FOSMC can effectively reduce the chattering phenomenon and ensure the power system stabilization in an upper bound time, thus enhancing the dynamic performances of the power system. |
doi_str_mv | 10.1109/TPWRS.2020.3043891 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2542501724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9290092</ieee_id><sourcerecordid>2542501724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5416d7cac9e5704d7ad3a68a1c90aa549e3a13680d24fdd99c84b986c81226103</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsvoJcFz1sn2SSbHKXYKrS0tBWPISZZTdluarJF-_ZubfE0MPP9w8-H0C2GAcYgH1bzt8VyQIDAoABaCInPUA8zJnLgpTxHPRCC5UIyuERXKa0BgHeHHlqM_I-z-cpvXDaK2rQ-NLrOZ9G6mC1rb33zkU2DddkwNG0Mdd3tqxCz6a5u_UabT9-4bB6-D_g-tW6TrtFFpevkbk6zj15HT6vhcz6ZjV-Gj5PcEMnanFHMbWm0kY6VQG2pbaG50NhI0JpR6QqNCy7AElpZK6UR9F0KbgQmhGMo-uj--Hcbw9fOpVatwy527ZMijBIGuCS0o8iRMjGkFF2ltrHrHfcKgzq4U3_u1MGdOrnrQnfHkHfO_QckkQCSFL_uJ2qV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542501724</pqid></control><display><type>article</type><title>Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Sunhua ; Xiong, Linyun ; Wang, Jie ; Li, Penghan ; Wang, Ziqiang ; Ma, Meiling</creator><creatorcontrib>Huang, Sunhua ; Xiong, Linyun ; Wang, Jie ; Li, Penghan ; Wang, Ziqiang ; Ma, Meiling</creatorcontrib><description>This paper proposes a fractional-order sliding mode controller (FOSMC) for fixed-time stability of multimachine power systems. Fractional calculus has been applied in sliding mode control (SMC) to design FOSMC which can better suppress the chattering phenomenon than the traditional integer-order SMC. Hence, a FOSMC is proposed to regulate the excitation of synchronous generators to improve the transient stability of the power system. In addition, the FOSMC can maintain the multimachine power systems stabilization in an upper bound and measurable convergence time independent of the initial operating conditions of the power system. The Lyapunov function is implemented to demonstrate the stability of multimachine power systems under the FOSMC, and the upper bound convergence time of the power system is generally estimated. The New England 10-machine 39-bus power system is taken into simulation to test the effectiveness and superior performances of the FOSMC than the existing control methods under different operating conditions. Meanwhile, the FOSMC with different orders are presented to verify that the FOSMC can better restrain the chattering phenomenon than traditional integer-order SMC. Simulation results show that the FOSMC can effectively reduce the chattering phenomenon and ensure the power system stabilization in an upper bound time, thus enhancing the dynamic performances of the power system.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2020.3043891</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control methods ; Control stability ; Controllers ; Convergence ; fixed-time stability ; Fractional calculus ; fractional-order calculus ; Initial conditions ; Integers ; Liapunov functions ; lyapunov function ; Lyapunov methods ; Multimachine power systems ; Power system stability ; Sliding mode control ; Time measurement ; Transient stability ; Upper bounds</subject><ispartof>IEEE transactions on power systems, 2021-07, Vol.36 (4), p.2866-2876</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5416d7cac9e5704d7ad3a68a1c90aa549e3a13680d24fdd99c84b986c81226103</citedby><cites>FETCH-LOGICAL-c295t-5416d7cac9e5704d7ad3a68a1c90aa549e3a13680d24fdd99c84b986c81226103</cites><orcidid>0000-0002-4483-546X ; 0000-0001-7295-5728 ; 0000-0002-2299-6326 ; 0000-0002-0641-818X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9290092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9290092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Sunhua</creatorcontrib><creatorcontrib>Xiong, Linyun</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Li, Penghan</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Ma, Meiling</creatorcontrib><title>Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper proposes a fractional-order sliding mode controller (FOSMC) for fixed-time stability of multimachine power systems. Fractional calculus has been applied in sliding mode control (SMC) to design FOSMC which can better suppress the chattering phenomenon than the traditional integer-order SMC. Hence, a FOSMC is proposed to regulate the excitation of synchronous generators to improve the transient stability of the power system. In addition, the FOSMC can maintain the multimachine power systems stabilization in an upper bound and measurable convergence time independent of the initial operating conditions of the power system. The Lyapunov function is implemented to demonstrate the stability of multimachine power systems under the FOSMC, and the upper bound convergence time of the power system is generally estimated. The New England 10-machine 39-bus power system is taken into simulation to test the effectiveness and superior performances of the FOSMC than the existing control methods under different operating conditions. Meanwhile, the FOSMC with different orders are presented to verify that the FOSMC can better restrain the chattering phenomenon than traditional integer-order SMC. Simulation results show that the FOSMC can effectively reduce the chattering phenomenon and ensure the power system stabilization in an upper bound time, thus enhancing the dynamic performances of the power system.</description><subject>Control methods</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Convergence</subject><subject>fixed-time stability</subject><subject>Fractional calculus</subject><subject>fractional-order calculus</subject><subject>Initial conditions</subject><subject>Integers</subject><subject>Liapunov functions</subject><subject>lyapunov function</subject><subject>Lyapunov methods</subject><subject>Multimachine power systems</subject><subject>Power system stability</subject><subject>Sliding mode control</subject><subject>Time measurement</subject><subject>Transient stability</subject><subject>Upper bounds</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsvoJcFz1sn2SSbHKXYKrS0tBWPISZZTdluarJF-_ZubfE0MPP9w8-H0C2GAcYgH1bzt8VyQIDAoABaCInPUA8zJnLgpTxHPRCC5UIyuERXKa0BgHeHHlqM_I-z-cpvXDaK2rQ-NLrOZ9G6mC1rb33zkU2DddkwNG0Mdd3tqxCz6a5u_UabT9-4bB6-D_g-tW6TrtFFpevkbk6zj15HT6vhcz6ZjV-Gj5PcEMnanFHMbWm0kY6VQG2pbaG50NhI0JpR6QqNCy7AElpZK6UR9F0KbgQmhGMo-uj--Hcbw9fOpVatwy527ZMijBIGuCS0o8iRMjGkFF2ltrHrHfcKgzq4U3_u1MGdOrnrQnfHkHfO_QckkQCSFL_uJ2qV</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Huang, Sunhua</creator><creator>Xiong, Linyun</creator><creator>Wang, Jie</creator><creator>Li, Penghan</creator><creator>Wang, Ziqiang</creator><creator>Ma, Meiling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4483-546X</orcidid><orcidid>https://orcid.org/0000-0001-7295-5728</orcidid><orcidid>https://orcid.org/0000-0002-2299-6326</orcidid><orcidid>https://orcid.org/0000-0002-0641-818X</orcidid></search><sort><creationdate>202107</creationdate><title>Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems</title><author>Huang, Sunhua ; Xiong, Linyun ; Wang, Jie ; Li, Penghan ; Wang, Ziqiang ; Ma, Meiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5416d7cac9e5704d7ad3a68a1c90aa549e3a13680d24fdd99c84b986c81226103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control methods</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Convergence</topic><topic>fixed-time stability</topic><topic>Fractional calculus</topic><topic>fractional-order calculus</topic><topic>Initial conditions</topic><topic>Integers</topic><topic>Liapunov functions</topic><topic>lyapunov function</topic><topic>Lyapunov methods</topic><topic>Multimachine power systems</topic><topic>Power system stability</topic><topic>Sliding mode control</topic><topic>Time measurement</topic><topic>Transient stability</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sunhua</creatorcontrib><creatorcontrib>Xiong, Linyun</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Li, Penghan</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Ma, Meiling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Sunhua</au><au>Xiong, Linyun</au><au>Wang, Jie</au><au>Li, Penghan</au><au>Wang, Ziqiang</au><au>Ma, Meiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2021-07</date><risdate>2021</risdate><volume>36</volume><issue>4</issue><spage>2866</spage><epage>2876</epage><pages>2866-2876</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper proposes a fractional-order sliding mode controller (FOSMC) for fixed-time stability of multimachine power systems. Fractional calculus has been applied in sliding mode control (SMC) to design FOSMC which can better suppress the chattering phenomenon than the traditional integer-order SMC. Hence, a FOSMC is proposed to regulate the excitation of synchronous generators to improve the transient stability of the power system. In addition, the FOSMC can maintain the multimachine power systems stabilization in an upper bound and measurable convergence time independent of the initial operating conditions of the power system. The Lyapunov function is implemented to demonstrate the stability of multimachine power systems under the FOSMC, and the upper bound convergence time of the power system is generally estimated. The New England 10-machine 39-bus power system is taken into simulation to test the effectiveness and superior performances of the FOSMC than the existing control methods under different operating conditions. Meanwhile, the FOSMC with different orders are presented to verify that the FOSMC can better restrain the chattering phenomenon than traditional integer-order SMC. Simulation results show that the FOSMC can effectively reduce the chattering phenomenon and ensure the power system stabilization in an upper bound time, thus enhancing the dynamic performances of the power system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2020.3043891</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4483-546X</orcidid><orcidid>https://orcid.org/0000-0001-7295-5728</orcidid><orcidid>https://orcid.org/0000-0002-2299-6326</orcidid><orcidid>https://orcid.org/0000-0002-0641-818X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2021-07, Vol.36 (4), p.2866-2876 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_journals_2542501724 |
source | IEEE Electronic Library (IEL) |
subjects | Control methods Control stability Controllers Convergence fixed-time stability Fractional calculus fractional-order calculus Initial conditions Integers Liapunov functions lyapunov function Lyapunov methods Multimachine power systems Power system stability Sliding mode control Time measurement Transient stability Upper bounds |
title | Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-Time%20Fractional-Order%20Sliding%20Mode%20Controller%20for%20Multimachine%20Power%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Huang,%20Sunhua&rft.date=2021-07&rft.volume=36&rft.issue=4&rft.spage=2866&rft.epage=2876&rft.pages=2866-2876&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2020.3043891&rft_dat=%3Cproquest_RIE%3E2542501724%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542501724&rft_id=info:pmid/&rft_ieee_id=9290092&rfr_iscdi=true |