Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems

This paper proposes a fractional-order sliding mode controller (FOSMC) for fixed-time stability of multimachine power systems. Fractional calculus has been applied in sliding mode control (SMC) to design FOSMC which can better suppress the chattering phenomenon than the traditional integer-order SMC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2021-07, Vol.36 (4), p.2866-2876
Hauptverfasser: Huang, Sunhua, Xiong, Linyun, Wang, Jie, Li, Penghan, Wang, Ziqiang, Ma, Meiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2876
container_issue 4
container_start_page 2866
container_title IEEE transactions on power systems
container_volume 36
creator Huang, Sunhua
Xiong, Linyun
Wang, Jie
Li, Penghan
Wang, Ziqiang
Ma, Meiling
description This paper proposes a fractional-order sliding mode controller (FOSMC) for fixed-time stability of multimachine power systems. Fractional calculus has been applied in sliding mode control (SMC) to design FOSMC which can better suppress the chattering phenomenon than the traditional integer-order SMC. Hence, a FOSMC is proposed to regulate the excitation of synchronous generators to improve the transient stability of the power system. In addition, the FOSMC can maintain the multimachine power systems stabilization in an upper bound and measurable convergence time independent of the initial operating conditions of the power system. The Lyapunov function is implemented to demonstrate the stability of multimachine power systems under the FOSMC, and the upper bound convergence time of the power system is generally estimated. The New England 10-machine 39-bus power system is taken into simulation to test the effectiveness and superior performances of the FOSMC than the existing control methods under different operating conditions. Meanwhile, the FOSMC with different orders are presented to verify that the FOSMC can better restrain the chattering phenomenon than traditional integer-order SMC. Simulation results show that the FOSMC can effectively reduce the chattering phenomenon and ensure the power system stabilization in an upper bound time, thus enhancing the dynamic performances of the power system.
doi_str_mv 10.1109/TPWRS.2020.3043891
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2542501724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9290092</ieee_id><sourcerecordid>2542501724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5416d7cac9e5704d7ad3a68a1c90aa549e3a13680d24fdd99c84b986c81226103</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsvoJcFz1sn2SSbHKXYKrS0tBWPISZZTdluarJF-_ZubfE0MPP9w8-H0C2GAcYgH1bzt8VyQIDAoABaCInPUA8zJnLgpTxHPRCC5UIyuERXKa0BgHeHHlqM_I-z-cpvXDaK2rQ-NLrOZ9G6mC1rb33zkU2DddkwNG0Mdd3tqxCz6a5u_UabT9-4bB6-D_g-tW6TrtFFpevkbk6zj15HT6vhcz6ZjV-Gj5PcEMnanFHMbWm0kY6VQG2pbaG50NhI0JpR6QqNCy7AElpZK6UR9F0KbgQmhGMo-uj--Hcbw9fOpVatwy527ZMijBIGuCS0o8iRMjGkFF2ltrHrHfcKgzq4U3_u1MGdOrnrQnfHkHfO_QckkQCSFL_uJ2qV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542501724</pqid></control><display><type>article</type><title>Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Sunhua ; Xiong, Linyun ; Wang, Jie ; Li, Penghan ; Wang, Ziqiang ; Ma, Meiling</creator><creatorcontrib>Huang, Sunhua ; Xiong, Linyun ; Wang, Jie ; Li, Penghan ; Wang, Ziqiang ; Ma, Meiling</creatorcontrib><description>This paper proposes a fractional-order sliding mode controller (FOSMC) for fixed-time stability of multimachine power systems. Fractional calculus has been applied in sliding mode control (SMC) to design FOSMC which can better suppress the chattering phenomenon than the traditional integer-order SMC. Hence, a FOSMC is proposed to regulate the excitation of synchronous generators to improve the transient stability of the power system. In addition, the FOSMC can maintain the multimachine power systems stabilization in an upper bound and measurable convergence time independent of the initial operating conditions of the power system. The Lyapunov function is implemented to demonstrate the stability of multimachine power systems under the FOSMC, and the upper bound convergence time of the power system is generally estimated. The New England 10-machine 39-bus power system is taken into simulation to test the effectiveness and superior performances of the FOSMC than the existing control methods under different operating conditions. Meanwhile, the FOSMC with different orders are presented to verify that the FOSMC can better restrain the chattering phenomenon than traditional integer-order SMC. Simulation results show that the FOSMC can effectively reduce the chattering phenomenon and ensure the power system stabilization in an upper bound time, thus enhancing the dynamic performances of the power system.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2020.3043891</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control methods ; Control stability ; Controllers ; Convergence ; fixed-time stability ; Fractional calculus ; fractional-order calculus ; Initial conditions ; Integers ; Liapunov functions ; lyapunov function ; Lyapunov methods ; Multimachine power systems ; Power system stability ; Sliding mode control ; Time measurement ; Transient stability ; Upper bounds</subject><ispartof>IEEE transactions on power systems, 2021-07, Vol.36 (4), p.2866-2876</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5416d7cac9e5704d7ad3a68a1c90aa549e3a13680d24fdd99c84b986c81226103</citedby><cites>FETCH-LOGICAL-c295t-5416d7cac9e5704d7ad3a68a1c90aa549e3a13680d24fdd99c84b986c81226103</cites><orcidid>0000-0002-4483-546X ; 0000-0001-7295-5728 ; 0000-0002-2299-6326 ; 0000-0002-0641-818X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9290092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9290092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Sunhua</creatorcontrib><creatorcontrib>Xiong, Linyun</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Li, Penghan</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Ma, Meiling</creatorcontrib><title>Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper proposes a fractional-order sliding mode controller (FOSMC) for fixed-time stability of multimachine power systems. Fractional calculus has been applied in sliding mode control (SMC) to design FOSMC which can better suppress the chattering phenomenon than the traditional integer-order SMC. Hence, a FOSMC is proposed to regulate the excitation of synchronous generators to improve the transient stability of the power system. In addition, the FOSMC can maintain the multimachine power systems stabilization in an upper bound and measurable convergence time independent of the initial operating conditions of the power system. The Lyapunov function is implemented to demonstrate the stability of multimachine power systems under the FOSMC, and the upper bound convergence time of the power system is generally estimated. The New England 10-machine 39-bus power system is taken into simulation to test the effectiveness and superior performances of the FOSMC than the existing control methods under different operating conditions. Meanwhile, the FOSMC with different orders are presented to verify that the FOSMC can better restrain the chattering phenomenon than traditional integer-order SMC. Simulation results show that the FOSMC can effectively reduce the chattering phenomenon and ensure the power system stabilization in an upper bound time, thus enhancing the dynamic performances of the power system.</description><subject>Control methods</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Convergence</subject><subject>fixed-time stability</subject><subject>Fractional calculus</subject><subject>fractional-order calculus</subject><subject>Initial conditions</subject><subject>Integers</subject><subject>Liapunov functions</subject><subject>lyapunov function</subject><subject>Lyapunov methods</subject><subject>Multimachine power systems</subject><subject>Power system stability</subject><subject>Sliding mode control</subject><subject>Time measurement</subject><subject>Transient stability</subject><subject>Upper bounds</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsvoJcFz1sn2SSbHKXYKrS0tBWPISZZTdluarJF-_ZubfE0MPP9w8-H0C2GAcYgH1bzt8VyQIDAoABaCInPUA8zJnLgpTxHPRCC5UIyuERXKa0BgHeHHlqM_I-z-cpvXDaK2rQ-NLrOZ9G6mC1rb33zkU2DddkwNG0Mdd3tqxCz6a5u_UabT9-4bB6-D_g-tW6TrtFFpevkbk6zj15HT6vhcz6ZjV-Gj5PcEMnanFHMbWm0kY6VQG2pbaG50NhI0JpR6QqNCy7AElpZK6UR9F0KbgQmhGMo-uj--Hcbw9fOpVatwy527ZMijBIGuCS0o8iRMjGkFF2ltrHrHfcKgzq4U3_u1MGdOrnrQnfHkHfO_QckkQCSFL_uJ2qV</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Huang, Sunhua</creator><creator>Xiong, Linyun</creator><creator>Wang, Jie</creator><creator>Li, Penghan</creator><creator>Wang, Ziqiang</creator><creator>Ma, Meiling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4483-546X</orcidid><orcidid>https://orcid.org/0000-0001-7295-5728</orcidid><orcidid>https://orcid.org/0000-0002-2299-6326</orcidid><orcidid>https://orcid.org/0000-0002-0641-818X</orcidid></search><sort><creationdate>202107</creationdate><title>Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems</title><author>Huang, Sunhua ; Xiong, Linyun ; Wang, Jie ; Li, Penghan ; Wang, Ziqiang ; Ma, Meiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5416d7cac9e5704d7ad3a68a1c90aa549e3a13680d24fdd99c84b986c81226103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control methods</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Convergence</topic><topic>fixed-time stability</topic><topic>Fractional calculus</topic><topic>fractional-order calculus</topic><topic>Initial conditions</topic><topic>Integers</topic><topic>Liapunov functions</topic><topic>lyapunov function</topic><topic>Lyapunov methods</topic><topic>Multimachine power systems</topic><topic>Power system stability</topic><topic>Sliding mode control</topic><topic>Time measurement</topic><topic>Transient stability</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sunhua</creatorcontrib><creatorcontrib>Xiong, Linyun</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Li, Penghan</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Ma, Meiling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Sunhua</au><au>Xiong, Linyun</au><au>Wang, Jie</au><au>Li, Penghan</au><au>Wang, Ziqiang</au><au>Ma, Meiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2021-07</date><risdate>2021</risdate><volume>36</volume><issue>4</issue><spage>2866</spage><epage>2876</epage><pages>2866-2876</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper proposes a fractional-order sliding mode controller (FOSMC) for fixed-time stability of multimachine power systems. Fractional calculus has been applied in sliding mode control (SMC) to design FOSMC which can better suppress the chattering phenomenon than the traditional integer-order SMC. Hence, a FOSMC is proposed to regulate the excitation of synchronous generators to improve the transient stability of the power system. In addition, the FOSMC can maintain the multimachine power systems stabilization in an upper bound and measurable convergence time independent of the initial operating conditions of the power system. The Lyapunov function is implemented to demonstrate the stability of multimachine power systems under the FOSMC, and the upper bound convergence time of the power system is generally estimated. The New England 10-machine 39-bus power system is taken into simulation to test the effectiveness and superior performances of the FOSMC than the existing control methods under different operating conditions. Meanwhile, the FOSMC with different orders are presented to verify that the FOSMC can better restrain the chattering phenomenon than traditional integer-order SMC. Simulation results show that the FOSMC can effectively reduce the chattering phenomenon and ensure the power system stabilization in an upper bound time, thus enhancing the dynamic performances of the power system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2020.3043891</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4483-546X</orcidid><orcidid>https://orcid.org/0000-0001-7295-5728</orcidid><orcidid>https://orcid.org/0000-0002-2299-6326</orcidid><orcidid>https://orcid.org/0000-0002-0641-818X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2021-07, Vol.36 (4), p.2866-2876
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2542501724
source IEEE Electronic Library (IEL)
subjects Control methods
Control stability
Controllers
Convergence
fixed-time stability
Fractional calculus
fractional-order calculus
Initial conditions
Integers
Liapunov functions
lyapunov function
Lyapunov methods
Multimachine power systems
Power system stability
Sliding mode control
Time measurement
Transient stability
Upper bounds
title Fixed-Time Fractional-Order Sliding Mode Controller for Multimachine Power Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-Time%20Fractional-Order%20Sliding%20Mode%20Controller%20for%20Multimachine%20Power%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Huang,%20Sunhua&rft.date=2021-07&rft.volume=36&rft.issue=4&rft.spage=2866&rft.epage=2876&rft.pages=2866-2876&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2020.3043891&rft_dat=%3Cproquest_RIE%3E2542501724%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542501724&rft_id=info:pmid/&rft_ieee_id=9290092&rfr_iscdi=true