Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a Differentially Private Scheme
We study the best-arm identification problem in multi-armed bandits with stochastic rewards when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a successive elimination algorithm for strictly optimal best-arm identification, show that it is...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in information theory 2021-06, Vol.2 (2), p.534-548 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | 2 |
container_start_page | 534 |
container_title | IEEE journal on selected areas in information theory |
container_volume | 2 |
creator | Nikolakakis, Konstantinos E. Kalogerias, Dionysios S. Sheffet, Or Sarwate, Anand D. |
description | We study the best-arm identification problem in multi-armed bandits with stochastic rewards when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a successive elimination algorithm for strictly optimal best-arm identification, show that it is \delta -PAC and characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem - as we show, when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private information, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support and characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand. |
doi_str_mv | 10.1109/JSAIT.2021.3081525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2542500318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9435774</ieee_id><sourcerecordid>2542500318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2545-4629c99729935e07fb6fbec4804ba1abb728d4b9f2583ce7f2ea246ab6d7f6243</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOHR_QG8CXncmp0nTeLfNr8lkyuZ1SNsTzOi6mbbC_r2pG-LVOfC-7_l4ouiK0RFjVN2-LMez1QgosFFCMyZAnEQDSDmLMynp6b_-PBo2zZpSCsC4zOQgMu-dqVtXIXntqtbFY7_BkkxMXbq2uSOLXes2piITbNpeI7MSg926wrRuW5PgI4bcO2vR94Kpqj158-7btEiWxSdu8DI6s6ZqcHisF9HH48Nq-hzPF0-z6XgeFyC4iHkKqlBKglKJQCptntocC55Rnhtm8lxCVvJcWRBZUqC0gAZ4avK0lDYFnlxEN4e5O7_96sK9er3tfB1W6rAABKUJy4ILDq7Cb5vGo9U7Hz70e82o7mnqX5q6p6mPNEPo-hByiPgXUDwRUvLkB6hGcD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542500318</pqid></control><display><type>article</type><title>Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a Differentially Private Scheme</title><source>IEEE Electronic Library (IEL)</source><creator>Nikolakakis, Konstantinos E. ; Kalogerias, Dionysios S. ; Sheffet, Or ; Sarwate, Anand D.</creator><creatorcontrib>Nikolakakis, Konstantinos E. ; Kalogerias, Dionysios S. ; Sheffet, Or ; Sarwate, Anand D.</creatorcontrib><description>We study the best-arm identification problem in multi-armed bandits with stochastic rewards when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a successive elimination algorithm for strictly optimal best-arm identification, show that it is <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>-PAC and characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem - as we show, when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private information, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support and characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.</description><identifier>ISSN: 2641-8770</identifier><identifier>EISSN: 2641-8770</identifier><identifier>DOI: 10.1109/JSAIT.2021.3081525</identifier><identifier>CODEN: IJSTL5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; best-arm identification ; Complexity ; Complexity theory ; differential privacy ; Estimation ; Information theory ; Lower bounds ; Multi-armed bandit problems ; Quantile bandits ; sequential estimation ; Strain ; Time measurement ; Upper bound ; value at risk</subject><ispartof>IEEE journal on selected areas in information theory, 2021-06, Vol.2 (2), p.534-548</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2545-4629c99729935e07fb6fbec4804ba1abb728d4b9f2583ce7f2ea246ab6d7f6243</citedby><cites>FETCH-LOGICAL-c2545-4629c99729935e07fb6fbec4804ba1abb728d4b9f2583ce7f2ea246ab6d7f6243</cites><orcidid>0000-0001-5165-3317 ; 0000-0002-5182-0530 ; 0000-0002-3459-5044 ; 0000-0001-6123-5282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9435774$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9435774$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nikolakakis, Konstantinos E.</creatorcontrib><creatorcontrib>Kalogerias, Dionysios S.</creatorcontrib><creatorcontrib>Sheffet, Or</creatorcontrib><creatorcontrib>Sarwate, Anand D.</creatorcontrib><title>Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a Differentially Private Scheme</title><title>IEEE journal on selected areas in information theory</title><addtitle>JSAIT</addtitle><description>We study the best-arm identification problem in multi-armed bandits with stochastic rewards when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a successive elimination algorithm for strictly optimal best-arm identification, show that it is <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>-PAC and characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem - as we show, when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private information, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support and characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>best-arm identification</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>differential privacy</subject><subject>Estimation</subject><subject>Information theory</subject><subject>Lower bounds</subject><subject>Multi-armed bandit problems</subject><subject>Quantile bandits</subject><subject>sequential estimation</subject><subject>Strain</subject><subject>Time measurement</subject><subject>Upper bound</subject><subject>value at risk</subject><issn>2641-8770</issn><issn>2641-8770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOHR_QG8CXncmp0nTeLfNr8lkyuZ1SNsTzOi6mbbC_r2pG-LVOfC-7_l4ouiK0RFjVN2-LMez1QgosFFCMyZAnEQDSDmLMynp6b_-PBo2zZpSCsC4zOQgMu-dqVtXIXntqtbFY7_BkkxMXbq2uSOLXes2piITbNpeI7MSg926wrRuW5PgI4bcO2vR94Kpqj158-7btEiWxSdu8DI6s6ZqcHisF9HH48Nq-hzPF0-z6XgeFyC4iHkKqlBKglKJQCptntocC55Rnhtm8lxCVvJcWRBZUqC0gAZ4avK0lDYFnlxEN4e5O7_96sK9er3tfB1W6rAABKUJy4ILDq7Cb5vGo9U7Hz70e82o7mnqX5q6p6mPNEPo-hByiPgXUDwRUvLkB6hGcD4</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Nikolakakis, Konstantinos E.</creator><creator>Kalogerias, Dionysios S.</creator><creator>Sheffet, Or</creator><creator>Sarwate, Anand D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5165-3317</orcidid><orcidid>https://orcid.org/0000-0002-5182-0530</orcidid><orcidid>https://orcid.org/0000-0002-3459-5044</orcidid><orcidid>https://orcid.org/0000-0001-6123-5282</orcidid></search><sort><creationdate>20210601</creationdate><title>Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a Differentially Private Scheme</title><author>Nikolakakis, Konstantinos E. ; Kalogerias, Dionysios S. ; Sheffet, Or ; Sarwate, Anand D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2545-4629c99729935e07fb6fbec4804ba1abb728d4b9f2583ce7f2ea246ab6d7f6243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>best-arm identification</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>differential privacy</topic><topic>Estimation</topic><topic>Information theory</topic><topic>Lower bounds</topic><topic>Multi-armed bandit problems</topic><topic>Quantile bandits</topic><topic>sequential estimation</topic><topic>Strain</topic><topic>Time measurement</topic><topic>Upper bound</topic><topic>value at risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolakakis, Konstantinos E.</creatorcontrib><creatorcontrib>Kalogerias, Dionysios S.</creatorcontrib><creatorcontrib>Sheffet, Or</creatorcontrib><creatorcontrib>Sarwate, Anand D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on selected areas in information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nikolakakis, Konstantinos E.</au><au>Kalogerias, Dionysios S.</au><au>Sheffet, Or</au><au>Sarwate, Anand D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a Differentially Private Scheme</atitle><jtitle>IEEE journal on selected areas in information theory</jtitle><stitle>JSAIT</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>2</volume><issue>2</issue><spage>534</spage><epage>548</epage><pages>534-548</pages><issn>2641-8770</issn><eissn>2641-8770</eissn><coden>IJSTL5</coden><abstract>We study the best-arm identification problem in multi-armed bandits with stochastic rewards when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a successive elimination algorithm for strictly optimal best-arm identification, show that it is <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>-PAC and characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem - as we show, when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private information, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support and characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSAIT.2021.3081525</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5165-3317</orcidid><orcidid>https://orcid.org/0000-0002-5182-0530</orcidid><orcidid>https://orcid.org/0000-0002-3459-5044</orcidid><orcidid>https://orcid.org/0000-0001-6123-5282</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2641-8770 |
ispartof | IEEE journal on selected areas in information theory, 2021-06, Vol.2 (2), p.534-548 |
issn | 2641-8770 2641-8770 |
language | eng |
recordid | cdi_proquest_journals_2542500318 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation algorithms best-arm identification Complexity Complexity theory differential privacy Estimation Information theory Lower bounds Multi-armed bandit problems Quantile bandits sequential estimation Strain Time measurement Upper bound value at risk |
title | Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a Differentially Private Scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantile%20Multi-Armed%20Bandits:%20Optimal%20Best-Arm%20Identification%20and%20a%20Differentially%20Private%20Scheme&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20information%20theory&rft.au=Nikolakakis,%20Konstantinos%20E.&rft.date=2021-06-01&rft.volume=2&rft.issue=2&rft.spage=534&rft.epage=548&rft.pages=534-548&rft.issn=2641-8770&rft.eissn=2641-8770&rft.coden=IJSTL5&rft_id=info:doi/10.1109/JSAIT.2021.3081525&rft_dat=%3Cproquest_RIE%3E2542500318%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542500318&rft_id=info:pmid/&rft_ieee_id=9435774&rfr_iscdi=true |