Characterization of Polygonal Hydraulic Jump during Liquid Jet Impingement on a Flat Substrate

— In this paper, the instabilities during liquid jet impingement on a flat plate are characterized using a coupled numerical-analytical method. When a liquid jet impacts on a substrate, the liquid jet spreads on the substrate, and at a certain radius from the impact point, a circular hydraulic jump...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics 2021-07, Vol.56 (4), p.552-565
Hauptverfasser: Esmaeeli, A., Passandideh-Fard, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 565
container_issue 4
container_start_page 552
container_title Fluid dynamics
container_volume 56
creator Esmaeeli, A.
Passandideh-Fard, M.
description — In this paper, the instabilities during liquid jet impingement on a flat plate are characterized using a coupled numerical-analytical method. When a liquid jet impacts on a substrate, the liquid jet spreads on the substrate, and at a certain radius from the impact point, a circular hydraulic jump is observed in the experiments. Under certain conditions, fluid flow instabilities change the shape of the jump from circular to polygonal. From a numerical point of view, however, the simulated jump is always circular, because these instabilities are ignored in numerical simulations. Since the number of polygonal jump corners is an important characteristic of this phenomenon, the focus of this paper is to integrate the simulated circular jump characteristics into an analytical model available in the literature to obtain the number of polygonal jump corners. The volume of fluid method along with Young’s algorithm is used to track the liquid free surface during the jet impact on the substrate and subsequent deformation leading to a circular jump. Important parameters of this phenomenon that are used in the method presented in this paper include upstream/downstream height, jump radius, and jump curvature which is extracted from numerical results of the simulated circular jump. The obtained number of polygon corners is compared with that of the experiment for various cases where a good agreement is observed.
doi_str_mv 10.1134/S0015462821040054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542381642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542381642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-f6606731e1b991e745706c0ed20f00aa5a4bcd380ffaa462fe9540cfc59fe23d3</originalsourceid><addsrcrecordid>eNp1kEtLA0EQhAdRMEZ_gLcBz6s9szP7OEowJiGgEL26dGZn4oZ9ZR6H-OvdJYIH8dINXf0VVBFyy-CesVg8bACYFAnPOAMBIMUZmTCZxlEmIT0nk1GORv2SXDm3B4A8TfiEfMw-0aLy2lZf6KuupZ2hr1193HUt1nRxLC2GulJ0FZqelsFW7Y6uq0OoSrrSni6bfrjoRreeDjDSeY2ebsLWeYteX5MLg7XTNz97St7nT2-zRbR-eV7OHteRYnnmI5MkkKQx02yb50ynQqaQKNAlBwOAKFFsVRlnYAzikMLoXApQRsncaB6X8ZTcnXx72x2Cdr7Yd8EOCVzBpeBxxpJhTgk7fSnbOWe1KXpbNWiPBYNirLH4U-PA8BPj-jG7tr_O_0PfBuV0NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542381642</pqid></control><display><type>article</type><title>Characterization of Polygonal Hydraulic Jump during Liquid Jet Impingement on a Flat Substrate</title><source>SpringerLink Journals</source><creator>Esmaeeli, A. ; Passandideh-Fard, M.</creator><creatorcontrib>Esmaeeli, A. ; Passandideh-Fard, M.</creatorcontrib><description>— In this paper, the instabilities during liquid jet impingement on a flat plate are characterized using a coupled numerical-analytical method. When a liquid jet impacts on a substrate, the liquid jet spreads on the substrate, and at a certain radius from the impact point, a circular hydraulic jump is observed in the experiments. Under certain conditions, fluid flow instabilities change the shape of the jump from circular to polygonal. From a numerical point of view, however, the simulated jump is always circular, because these instabilities are ignored in numerical simulations. Since the number of polygonal jump corners is an important characteristic of this phenomenon, the focus of this paper is to integrate the simulated circular jump characteristics into an analytical model available in the literature to obtain the number of polygonal jump corners. The volume of fluid method along with Young’s algorithm is used to track the liquid free surface during the jet impact on the substrate and subsequent deformation leading to a circular jump. Important parameters of this phenomenon that are used in the method presented in this paper include upstream/downstream height, jump radius, and jump curvature which is extracted from numerical results of the simulated circular jump. The obtained number of polygon corners is compared with that of the experiment for various cases where a good agreement is observed.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462821040054</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Classical and Continuum Physics ; Classical Mechanics ; Computational fluid dynamics ; Computer simulation ; Corners ; Engineering Fluid Dynamics ; Flat plates ; Fluid flow ; Fluid- and Aerodynamics ; Free surfaces ; Hydraulic jump ; Jet impingement ; Mathematical models ; Physics ; Physics and Astronomy ; Polygons ; Substrates</subject><ispartof>Fluid dynamics, 2021-07, Vol.56 (4), p.552-565</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0015-4628, Fluid Dynamics, 2021, Vol. 56, No. 4, pp. 552–565. © Pleiades Publishing, Ltd., 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-f6606731e1b991e745706c0ed20f00aa5a4bcd380ffaa462fe9540cfc59fe23d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462821040054$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462821040054$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Esmaeeli, A.</creatorcontrib><creatorcontrib>Passandideh-Fard, M.</creatorcontrib><title>Characterization of Polygonal Hydraulic Jump during Liquid Jet Impingement on a Flat Substrate</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>— In this paper, the instabilities during liquid jet impingement on a flat plate are characterized using a coupled numerical-analytical method. When a liquid jet impacts on a substrate, the liquid jet spreads on the substrate, and at a certain radius from the impact point, a circular hydraulic jump is observed in the experiments. Under certain conditions, fluid flow instabilities change the shape of the jump from circular to polygonal. From a numerical point of view, however, the simulated jump is always circular, because these instabilities are ignored in numerical simulations. Since the number of polygonal jump corners is an important characteristic of this phenomenon, the focus of this paper is to integrate the simulated circular jump characteristics into an analytical model available in the literature to obtain the number of polygonal jump corners. The volume of fluid method along with Young’s algorithm is used to track the liquid free surface during the jet impact on the substrate and subsequent deformation leading to a circular jump. Important parameters of this phenomenon that are used in the method presented in this paper include upstream/downstream height, jump radius, and jump curvature which is extracted from numerical results of the simulated circular jump. The obtained number of polygon corners is compared with that of the experiment for various cases where a good agreement is observed.</description><subject>Algorithms</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Corners</subject><subject>Engineering Fluid Dynamics</subject><subject>Flat plates</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Free surfaces</subject><subject>Hydraulic jump</subject><subject>Jet impingement</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polygons</subject><subject>Substrates</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLA0EQhAdRMEZ_gLcBz6s9szP7OEowJiGgEL26dGZn4oZ9ZR6H-OvdJYIH8dINXf0VVBFyy-CesVg8bACYFAnPOAMBIMUZmTCZxlEmIT0nk1GORv2SXDm3B4A8TfiEfMw-0aLy2lZf6KuupZ2hr1193HUt1nRxLC2GulJ0FZqelsFW7Y6uq0OoSrrSni6bfrjoRreeDjDSeY2ebsLWeYteX5MLg7XTNz97St7nT2-zRbR-eV7OHteRYnnmI5MkkKQx02yb50ynQqaQKNAlBwOAKFFsVRlnYAzikMLoXApQRsncaB6X8ZTcnXx72x2Cdr7Yd8EOCVzBpeBxxpJhTgk7fSnbOWe1KXpbNWiPBYNirLH4U-PA8BPj-jG7tr_O_0PfBuV0NA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Esmaeeli, A.</creator><creator>Passandideh-Fard, M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>Characterization of Polygonal Hydraulic Jump during Liquid Jet Impingement on a Flat Substrate</title><author>Esmaeeli, A. ; Passandideh-Fard, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-f6606731e1b991e745706c0ed20f00aa5a4bcd380ffaa462fe9540cfc59fe23d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Corners</topic><topic>Engineering Fluid Dynamics</topic><topic>Flat plates</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Free surfaces</topic><topic>Hydraulic jump</topic><topic>Jet impingement</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polygons</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esmaeeli, A.</creatorcontrib><creatorcontrib>Passandideh-Fard, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esmaeeli, A.</au><au>Passandideh-Fard, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Polygonal Hydraulic Jump during Liquid Jet Impingement on a Flat Substrate</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>56</volume><issue>4</issue><spage>552</spage><epage>565</epage><pages>552-565</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>— In this paper, the instabilities during liquid jet impingement on a flat plate are characterized using a coupled numerical-analytical method. When a liquid jet impacts on a substrate, the liquid jet spreads on the substrate, and at a certain radius from the impact point, a circular hydraulic jump is observed in the experiments. Under certain conditions, fluid flow instabilities change the shape of the jump from circular to polygonal. From a numerical point of view, however, the simulated jump is always circular, because these instabilities are ignored in numerical simulations. Since the number of polygonal jump corners is an important characteristic of this phenomenon, the focus of this paper is to integrate the simulated circular jump characteristics into an analytical model available in the literature to obtain the number of polygonal jump corners. The volume of fluid method along with Young’s algorithm is used to track the liquid free surface during the jet impact on the substrate and subsequent deformation leading to a circular jump. Important parameters of this phenomenon that are used in the method presented in this paper include upstream/downstream height, jump radius, and jump curvature which is extracted from numerical results of the simulated circular jump. The obtained number of polygon corners is compared with that of the experiment for various cases where a good agreement is observed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0015462821040054</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-4628
ispartof Fluid dynamics, 2021-07, Vol.56 (4), p.552-565
issn 0015-4628
1573-8507
language eng
recordid cdi_proquest_journals_2542381642
source SpringerLink Journals
subjects Algorithms
Classical and Continuum Physics
Classical Mechanics
Computational fluid dynamics
Computer simulation
Corners
Engineering Fluid Dynamics
Flat plates
Fluid flow
Fluid- and Aerodynamics
Free surfaces
Hydraulic jump
Jet impingement
Mathematical models
Physics
Physics and Astronomy
Polygons
Substrates
title Characterization of Polygonal Hydraulic Jump during Liquid Jet Impingement on a Flat Substrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Polygonal%20Hydraulic%20Jump%20during%20Liquid%20Jet%20Impingement%20on%20a%20Flat%20Substrate&rft.jtitle=Fluid%20dynamics&rft.au=Esmaeeli,%20A.&rft.date=2021-07-01&rft.volume=56&rft.issue=4&rft.spage=552&rft.epage=565&rft.pages=552-565&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462821040054&rft_dat=%3Cproquest_cross%3E2542381642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542381642&rft_id=info:pmid/&rfr_iscdi=true