Dynamics of a Spherical Bubble in Non-Newtonian Liquids

— A series of the problems of dynamics of a spherical gas cavity with the uniformly distributed pressure inside and, in particular, without pressure are considered within the framework of hydrodynamic theory of incompressible power-law non-Newtonian liquids. A special attention is given to investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics 2021-07, Vol.56 (4), p.492-502
Hauptverfasser: Golubyatnikov, A. N., Ukrainskii, D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 4
container_start_page 492
container_title Fluid dynamics
container_volume 56
creator Golubyatnikov, A. N.
Ukrainskii, D. V.
description — A series of the problems of dynamics of a spherical gas cavity with the uniformly distributed pressure inside and, in particular, without pressure are considered within the framework of hydrodynamic theory of incompressible power-law non-Newtonian liquids. A special attention is given to investigation of the behavior of solutions as functions of the exponent (index) in the power-law non-Newtonian model and determination of the extreme properties of the solutions. The problems of calculation of the necessary external pressure that leads to conservation of the kinetic energy of liquid or the dissipation rate in the process of compression are solved. Other solutions are constructed in a particular case of the Newtonian model. They represent the exact implementation of the linear-resonance behavior of the cavity radius within the framework of the nonlinear formulation of problem and, on the contrary, the law of cavity dynamics under a given harmonic external pressure at the linear-resonance frequency is corrected using numerical methods. The law of dependence of the concentration of the kinetic energy of liquid on the index in the non-Newtonian model and the generalized Reynolds number is established analytically and numerically under the piecewise constant external pressure in the case of the vacuum cavity. It is shown that for a certain indices there is no energy concentration at all. The critical values of the generalized Reynolds number at which the energy concentration also disappears are calculated for the remaining indices. The total energy dissipation is minimized in the case of the cavity occupied by a gas.
doi_str_mv 10.1134/S0015462821040078
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2542381614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718418473</galeid><sourcerecordid>A718418473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-e41f602bad6eec6403f1d07b828ebac89f4e1088f95f18d48ac55c770d73d5d73</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLeCz52XNGmyxzmdCmM-TJ9LmiYzo0u2pEX27c2o4IPIHXeQ-__ucofQLYYJxgW9XwNgRksiCAYKwMUZGmHGi1ww4OdodCrnp_oluopxCwBTXpIR4o9HJ3dWxcybTGbr_acOVsk2e-jrutWZddnKu3ylvzrvrHTZ0h5628RrdGFkG_XNTx6jj8XT-_wlX749v85ny1wRwbpcU2xKILVsSq1VSaEwuAFeCyJ0LZWYGqoxCGGmzGDRUCEVY4pzaHjRsBTG6G7ouw_-0OvYVVvfB5dGVoRRUghcYppUk0G1ka2urDO-C1Ila3TazTttbHqfcSxocl4kAA-ACj7GoE21D3Ynw7HCUJ0OWv05aGLIwMSkdRsdfr_yP_QNJ-h1FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542381614</pqid></control><display><type>article</type><title>Dynamics of a Spherical Bubble in Non-Newtonian Liquids</title><source>SpringerNature Journals</source><creator>Golubyatnikov, A. N. ; Ukrainskii, D. V.</creator><creatorcontrib>Golubyatnikov, A. N. ; Ukrainskii, D. V.</creatorcontrib><description>— A series of the problems of dynamics of a spherical gas cavity with the uniformly distributed pressure inside and, in particular, without pressure are considered within the framework of hydrodynamic theory of incompressible power-law non-Newtonian liquids. A special attention is given to investigation of the behavior of solutions as functions of the exponent (index) in the power-law non-Newtonian model and determination of the extreme properties of the solutions. The problems of calculation of the necessary external pressure that leads to conservation of the kinetic energy of liquid or the dissipation rate in the process of compression are solved. Other solutions are constructed in a particular case of the Newtonian model. They represent the exact implementation of the linear-resonance behavior of the cavity radius within the framework of the nonlinear formulation of problem and, on the contrary, the law of cavity dynamics under a given harmonic external pressure at the linear-resonance frequency is corrected using numerical methods. The law of dependence of the concentration of the kinetic energy of liquid on the index in the non-Newtonian model and the generalized Reynolds number is established analytically and numerically under the piecewise constant external pressure in the case of the vacuum cavity. It is shown that for a certain indices there is no energy concentration at all. The critical values of the generalized Reynolds number at which the energy concentration also disappears are calculated for the remaining indices. The total energy dissipation is minimized in the case of the cavity occupied by a gas.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462821040078</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Classical and Continuum Physics ; Classical Mechanics ; Computational fluid dynamics ; Energy dissipation ; Engineering Fluid Dynamics ; External pressure ; Fluid flow ; Fluid- and Aerodynamics ; Force and energy ; Kinetic energy ; Mathematical models ; Newton's laws of motion ; Newtonian liquids ; Non Newtonian liquids ; Numerical methods ; Physics ; Physics and Astronomy ; Power law ; Resonance ; Reynolds number ; Stress concentration</subject><ispartof>Fluid dynamics, 2021-07, Vol.56 (4), p.492-502</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0015-4628, Fluid Dynamics, 2021, Vol. 56, No. 4, pp. 492–502. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2021, Vol. 56, No. 4, pp. 52–62.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-e41f602bad6eec6403f1d07b828ebac89f4e1088f95f18d48ac55c770d73d5d73</citedby><cites>FETCH-LOGICAL-c285t-e41f602bad6eec6403f1d07b828ebac89f4e1088f95f18d48ac55c770d73d5d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462821040078$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462821040078$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Golubyatnikov, A. N.</creatorcontrib><creatorcontrib>Ukrainskii, D. V.</creatorcontrib><title>Dynamics of a Spherical Bubble in Non-Newtonian Liquids</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>— A series of the problems of dynamics of a spherical gas cavity with the uniformly distributed pressure inside and, in particular, without pressure are considered within the framework of hydrodynamic theory of incompressible power-law non-Newtonian liquids. A special attention is given to investigation of the behavior of solutions as functions of the exponent (index) in the power-law non-Newtonian model and determination of the extreme properties of the solutions. The problems of calculation of the necessary external pressure that leads to conservation of the kinetic energy of liquid or the dissipation rate in the process of compression are solved. Other solutions are constructed in a particular case of the Newtonian model. They represent the exact implementation of the linear-resonance behavior of the cavity radius within the framework of the nonlinear formulation of problem and, on the contrary, the law of cavity dynamics under a given harmonic external pressure at the linear-resonance frequency is corrected using numerical methods. The law of dependence of the concentration of the kinetic energy of liquid on the index in the non-Newtonian model and the generalized Reynolds number is established analytically and numerically under the piecewise constant external pressure in the case of the vacuum cavity. It is shown that for a certain indices there is no energy concentration at all. The critical values of the generalized Reynolds number at which the energy concentration also disappears are calculated for the remaining indices. The total energy dissipation is minimized in the case of the cavity occupied by a gas.</description><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Energy dissipation</subject><subject>Engineering Fluid Dynamics</subject><subject>External pressure</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Force and energy</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Newton's laws of motion</subject><subject>Newtonian liquids</subject><subject>Non Newtonian liquids</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power law</subject><subject>Resonance</subject><subject>Reynolds number</subject><subject>Stress concentration</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoOKcfwLeCz52XNGmyxzmdCmM-TJ9LmiYzo0u2pEX27c2o4IPIHXeQ-__ucofQLYYJxgW9XwNgRksiCAYKwMUZGmHGi1ww4OdodCrnp_oluopxCwBTXpIR4o9HJ3dWxcybTGbr_acOVsk2e-jrutWZddnKu3ylvzrvrHTZ0h5628RrdGFkG_XNTx6jj8XT-_wlX749v85ny1wRwbpcU2xKILVsSq1VSaEwuAFeCyJ0LZWYGqoxCGGmzGDRUCEVY4pzaHjRsBTG6G7ouw_-0OvYVVvfB5dGVoRRUghcYppUk0G1ka2urDO-C1Ila3TazTttbHqfcSxocl4kAA-ACj7GoE21D3Ynw7HCUJ0OWv05aGLIwMSkdRsdfr_yP_QNJ-h1FQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Golubyatnikov, A. N.</creator><creator>Ukrainskii, D. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>Dynamics of a Spherical Bubble in Non-Newtonian Liquids</title><author>Golubyatnikov, A. N. ; Ukrainskii, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-e41f602bad6eec6403f1d07b828ebac89f4e1088f95f18d48ac55c770d73d5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Energy dissipation</topic><topic>Engineering Fluid Dynamics</topic><topic>External pressure</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Force and energy</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Newton's laws of motion</topic><topic>Newtonian liquids</topic><topic>Non Newtonian liquids</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power law</topic><topic>Resonance</topic><topic>Reynolds number</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golubyatnikov, A. N.</creatorcontrib><creatorcontrib>Ukrainskii, D. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golubyatnikov, A. N.</au><au>Ukrainskii, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of a Spherical Bubble in Non-Newtonian Liquids</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>56</volume><issue>4</issue><spage>492</spage><epage>502</epage><pages>492-502</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>— A series of the problems of dynamics of a spherical gas cavity with the uniformly distributed pressure inside and, in particular, without pressure are considered within the framework of hydrodynamic theory of incompressible power-law non-Newtonian liquids. A special attention is given to investigation of the behavior of solutions as functions of the exponent (index) in the power-law non-Newtonian model and determination of the extreme properties of the solutions. The problems of calculation of the necessary external pressure that leads to conservation of the kinetic energy of liquid or the dissipation rate in the process of compression are solved. Other solutions are constructed in a particular case of the Newtonian model. They represent the exact implementation of the linear-resonance behavior of the cavity radius within the framework of the nonlinear formulation of problem and, on the contrary, the law of cavity dynamics under a given harmonic external pressure at the linear-resonance frequency is corrected using numerical methods. The law of dependence of the concentration of the kinetic energy of liquid on the index in the non-Newtonian model and the generalized Reynolds number is established analytically and numerically under the piecewise constant external pressure in the case of the vacuum cavity. It is shown that for a certain indices there is no energy concentration at all. The critical values of the generalized Reynolds number at which the energy concentration also disappears are calculated for the remaining indices. The total energy dissipation is minimized in the case of the cavity occupied by a gas.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0015462821040078</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-4628
ispartof Fluid dynamics, 2021-07, Vol.56 (4), p.492-502
issn 0015-4628
1573-8507
language eng
recordid cdi_proquest_journals_2542381614
source SpringerNature Journals
subjects Analysis
Classical and Continuum Physics
Classical Mechanics
Computational fluid dynamics
Energy dissipation
Engineering Fluid Dynamics
External pressure
Fluid flow
Fluid- and Aerodynamics
Force and energy
Kinetic energy
Mathematical models
Newton's laws of motion
Newtonian liquids
Non Newtonian liquids
Numerical methods
Physics
Physics and Astronomy
Power law
Resonance
Reynolds number
Stress concentration
title Dynamics of a Spherical Bubble in Non-Newtonian Liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20a%20Spherical%20Bubble%20in%20Non-Newtonian%20Liquids&rft.jtitle=Fluid%20dynamics&rft.au=Golubyatnikov,%20A.%20N.&rft.date=2021-07-01&rft.volume=56&rft.issue=4&rft.spage=492&rft.epage=502&rft.pages=492-502&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462821040078&rft_dat=%3Cgale_proqu%3EA718418473%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542381614&rft_id=info:pmid/&rft_galeid=A718418473&rfr_iscdi=true