A parameter-free total Lagrangian smooth particle hydrodynamics algorithm applied to problems with free surfaces

This paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws written in terms of the linear momentum and the Jacobian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational particle mechanics 2021-07, Vol.8 (4), p.859-892
Hauptverfasser: Low, Kenny W. Q., Lee, Chun Hean, Gil, Antonio J., Haider, Jibran, Bonet, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892
container_issue 4
container_start_page 859
container_title Computational particle mechanics
container_volume 8
creator Low, Kenny W. Q.
Lee, Chun Hean
Gil, Antonio J.
Haider, Jibran
Bonet, Javier
description This paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws written in terms of the linear momentum and the Jacobian of the deformation. One of the aims of this paper is to explore the use of Total Lagrangian description in the case of large deformations but without topological changes. In this case, the evaluation of spatial integrals is carried out with respect to the initial undeformed configuration, yielding an extremely efficient formulation where the need for continuous particle neighbouring search is completely circumvented. To guarantee stability from the SPH discretisation point of view, consistently derived Riemann-based numerical dissipation is suitably introduced where global numerical entropy production is demonstrated via a novel technique in terms of the time rate of the Hamiltonian of the system. Since the kernel derivatives presented in this work are fixed in the reference configuration, the non-physical clumping mechanism is completely removed. To fulfil conservation of the global angular momentum, a posteriori (least-squares) projection procedure is introduced. Finally, a wide spectrum of dedicated prototype problems is thoroughly examined. Through these tests, the SPH methodology overcomes by construction a number of persistent numerical drawbacks (e.g. hour-glassing, pressure instability, global conservation and/or completeness issues) commonly found in SPH literature, without resorting to the use of any ad-hoc user-defined artificial stabilisation parameters. Crucially, the overall SPH algorithm yields equal second order of convergence for both velocities and pressure.
doi_str_mv 10.1007/s40571-020-00374-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542381297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542381297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-95ff6058e7c2048527698d5d9a2646a840bd422744857bf18bace23df649b84c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA62hek2SWpfiCghtdh8xM0k6ZmYxJiu2_N-2I7lzdC-ec714OALcE3xOM5UPkuJAEYYoRxkxydLgAM0pKgThT4vJ3l-oaLGLcYYxJwWSp2AyMSziaYHqbbEAuWAuTT6aDa7MJZti0ZoCx9z5tT7bU1p2F22MTfHMcTN_WEZpu40Obtj0049i1tskAOAZfdbaP8Csr8IyN--BMbeMNuHKmi3bxM-fg4-nxffWC1m_Pr6vlGtVMsITKwjmBC2VlTTFXBZWiVE3RlIYKLoziuGo4pZJnTVaOqCrDKWuc4GWleM3m4G7i5l8-9zYmvfP7MOSTmhacMkVoKbOLTq46-BiDdXoMbW_CUROsT-XqqVydy9XncvUhh9gUitk8bGz4Q_-T-ga4GH5z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542381297</pqid></control><display><type>article</type><title>A parameter-free total Lagrangian smooth particle hydrodynamics algorithm applied to problems with free surfaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Low, Kenny W. Q. ; Lee, Chun Hean ; Gil, Antonio J. ; Haider, Jibran ; Bonet, Javier</creator><creatorcontrib>Low, Kenny W. Q. ; Lee, Chun Hean ; Gil, Antonio J. ; Haider, Jibran ; Bonet, Javier</creatorcontrib><description>This paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws written in terms of the linear momentum and the Jacobian of the deformation. One of the aims of this paper is to explore the use of Total Lagrangian description in the case of large deformations but without topological changes. In this case, the evaluation of spatial integrals is carried out with respect to the initial undeformed configuration, yielding an extremely efficient formulation where the need for continuous particle neighbouring search is completely circumvented. To guarantee stability from the SPH discretisation point of view, consistently derived Riemann-based numerical dissipation is suitably introduced where global numerical entropy production is demonstrated via a novel technique in terms of the time rate of the Hamiltonian of the system. Since the kernel derivatives presented in this work are fixed in the reference configuration, the non-physical clumping mechanism is completely removed. To fulfil conservation of the global angular momentum, a posteriori (least-squares) projection procedure is introduced. Finally, a wide spectrum of dedicated prototype problems is thoroughly examined. Through these tests, the SPH methodology overcomes by construction a number of persistent numerical drawbacks (e.g. hour-glassing, pressure instability, global conservation and/or completeness issues) commonly found in SPH literature, without resorting to the use of any ad-hoc user-defined artificial stabilisation parameters. Crucially, the overall SPH algorithm yields equal second order of convergence for both velocities and pressure.</description><identifier>ISSN: 2196-4378</identifier><identifier>EISSN: 2196-4386</identifier><identifier>DOI: 10.1007/s40571-020-00374-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Angular momentum ; Classical and Continuum Physics ; Computational fluid dynamics ; Computational Science and Engineering ; Configurations ; Conservation laws ; Deformation ; Engineering ; Fluid flow ; Fluid mechanics ; Free surfaces ; Numerical dissipation ; Parameters ; Smooth particle hydrodynamics ; Theoretical and Applied Mechanics</subject><ispartof>Computational particle mechanics, 2021-07, Vol.8 (4), p.859-892</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-95ff6058e7c2048527698d5d9a2646a840bd422744857bf18bace23df649b84c3</citedby><cites>FETCH-LOGICAL-c363t-95ff6058e7c2048527698d5d9a2646a840bd422744857bf18bace23df649b84c3</cites><orcidid>0000-0003-1102-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40571-020-00374-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40571-020-00374-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Low, Kenny W. Q.</creatorcontrib><creatorcontrib>Lee, Chun Hean</creatorcontrib><creatorcontrib>Gil, Antonio J.</creatorcontrib><creatorcontrib>Haider, Jibran</creatorcontrib><creatorcontrib>Bonet, Javier</creatorcontrib><title>A parameter-free total Lagrangian smooth particle hydrodynamics algorithm applied to problems with free surfaces</title><title>Computational particle mechanics</title><addtitle>Comp. Part. Mech</addtitle><description>This paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws written in terms of the linear momentum and the Jacobian of the deformation. One of the aims of this paper is to explore the use of Total Lagrangian description in the case of large deformations but without topological changes. In this case, the evaluation of spatial integrals is carried out with respect to the initial undeformed configuration, yielding an extremely efficient formulation where the need for continuous particle neighbouring search is completely circumvented. To guarantee stability from the SPH discretisation point of view, consistently derived Riemann-based numerical dissipation is suitably introduced where global numerical entropy production is demonstrated via a novel technique in terms of the time rate of the Hamiltonian of the system. Since the kernel derivatives presented in this work are fixed in the reference configuration, the non-physical clumping mechanism is completely removed. To fulfil conservation of the global angular momentum, a posteriori (least-squares) projection procedure is introduced. Finally, a wide spectrum of dedicated prototype problems is thoroughly examined. Through these tests, the SPH methodology overcomes by construction a number of persistent numerical drawbacks (e.g. hour-glassing, pressure instability, global conservation and/or completeness issues) commonly found in SPH literature, without resorting to the use of any ad-hoc user-defined artificial stabilisation parameters. Crucially, the overall SPH algorithm yields equal second order of convergence for both velocities and pressure.</description><subject>Algorithms</subject><subject>Angular momentum</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computational Science and Engineering</subject><subject>Configurations</subject><subject>Conservation laws</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Free surfaces</subject><subject>Numerical dissipation</subject><subject>Parameters</subject><subject>Smooth particle hydrodynamics</subject><subject>Theoretical and Applied Mechanics</subject><issn>2196-4378</issn><issn>2196-4386</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKuA62hek2SWpfiCghtdh8xM0k6ZmYxJiu2_N-2I7lzdC-ec714OALcE3xOM5UPkuJAEYYoRxkxydLgAM0pKgThT4vJ3l-oaLGLcYYxJwWSp2AyMSziaYHqbbEAuWAuTT6aDa7MJZti0ZoCx9z5tT7bU1p2F22MTfHMcTN_WEZpu40Obtj0049i1tskAOAZfdbaP8Csr8IyN--BMbeMNuHKmi3bxM-fg4-nxffWC1m_Pr6vlGtVMsITKwjmBC2VlTTFXBZWiVE3RlIYKLoziuGo4pZJnTVaOqCrDKWuc4GWleM3m4G7i5l8-9zYmvfP7MOSTmhacMkVoKbOLTq46-BiDdXoMbW_CUROsT-XqqVydy9XncvUhh9gUitk8bGz4Q_-T-ga4GH5z</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Low, Kenny W. Q.</creator><creator>Lee, Chun Hean</creator><creator>Gil, Antonio J.</creator><creator>Haider, Jibran</creator><creator>Bonet, Javier</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1102-3729</orcidid></search><sort><creationdate>20210701</creationdate><title>A parameter-free total Lagrangian smooth particle hydrodynamics algorithm applied to problems with free surfaces</title><author>Low, Kenny W. Q. ; Lee, Chun Hean ; Gil, Antonio J. ; Haider, Jibran ; Bonet, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-95ff6058e7c2048527698d5d9a2646a840bd422744857bf18bace23df649b84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Angular momentum</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computational Science and Engineering</topic><topic>Configurations</topic><topic>Conservation laws</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Free surfaces</topic><topic>Numerical dissipation</topic><topic>Parameters</topic><topic>Smooth particle hydrodynamics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Low, Kenny W. Q.</creatorcontrib><creatorcontrib>Lee, Chun Hean</creatorcontrib><creatorcontrib>Gil, Antonio J.</creatorcontrib><creatorcontrib>Haider, Jibran</creatorcontrib><creatorcontrib>Bonet, Javier</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Computational particle mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Low, Kenny W. Q.</au><au>Lee, Chun Hean</au><au>Gil, Antonio J.</au><au>Haider, Jibran</au><au>Bonet, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parameter-free total Lagrangian smooth particle hydrodynamics algorithm applied to problems with free surfaces</atitle><jtitle>Computational particle mechanics</jtitle><stitle>Comp. Part. Mech</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>8</volume><issue>4</issue><spage>859</spage><epage>892</epage><pages>859-892</pages><issn>2196-4378</issn><eissn>2196-4386</eissn><abstract>This paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws written in terms of the linear momentum and the Jacobian of the deformation. One of the aims of this paper is to explore the use of Total Lagrangian description in the case of large deformations but without topological changes. In this case, the evaluation of spatial integrals is carried out with respect to the initial undeformed configuration, yielding an extremely efficient formulation where the need for continuous particle neighbouring search is completely circumvented. To guarantee stability from the SPH discretisation point of view, consistently derived Riemann-based numerical dissipation is suitably introduced where global numerical entropy production is demonstrated via a novel technique in terms of the time rate of the Hamiltonian of the system. Since the kernel derivatives presented in this work are fixed in the reference configuration, the non-physical clumping mechanism is completely removed. To fulfil conservation of the global angular momentum, a posteriori (least-squares) projection procedure is introduced. Finally, a wide spectrum of dedicated prototype problems is thoroughly examined. Through these tests, the SPH methodology overcomes by construction a number of persistent numerical drawbacks (e.g. hour-glassing, pressure instability, global conservation and/or completeness issues) commonly found in SPH literature, without resorting to the use of any ad-hoc user-defined artificial stabilisation parameters. Crucially, the overall SPH algorithm yields equal second order of convergence for both velocities and pressure.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40571-020-00374-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-1102-3729</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-4378
ispartof Computational particle mechanics, 2021-07, Vol.8 (4), p.859-892
issn 2196-4378
2196-4386
language eng
recordid cdi_proquest_journals_2542381297
source Springer Nature - Complete Springer Journals
subjects Algorithms
Angular momentum
Classical and Continuum Physics
Computational fluid dynamics
Computational Science and Engineering
Configurations
Conservation laws
Deformation
Engineering
Fluid flow
Fluid mechanics
Free surfaces
Numerical dissipation
Parameters
Smooth particle hydrodynamics
Theoretical and Applied Mechanics
title A parameter-free total Lagrangian smooth particle hydrodynamics algorithm applied to problems with free surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parameter-free%20total%20Lagrangian%20smooth%20particle%20hydrodynamics%20algorithm%20applied%20to%20problems%20with%20free%20surfaces&rft.jtitle=Computational%20particle%20mechanics&rft.au=Low,%20Kenny%20W.%20Q.&rft.date=2021-07-01&rft.volume=8&rft.issue=4&rft.spage=859&rft.epage=892&rft.pages=859-892&rft.issn=2196-4378&rft.eissn=2196-4386&rft_id=info:doi/10.1007/s40571-020-00374-x&rft_dat=%3Cproquest_cross%3E2542381297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542381297&rft_id=info:pmid/&rfr_iscdi=true