Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces

In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev–Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz–Sobolev spaces on domains, not necessarily bounded, of R N . Our approach is based on solving the obstacle problem and usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2021-07, Vol.25 (3), p.819-841
Hauptverfasser: Benyaiche, Allami, Khlifi, Ismail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 841
container_issue 3
container_start_page 819
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 25
creator Benyaiche, Allami
Khlifi, Ismail
description In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev–Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz–Sobolev spaces on domains, not necessarily bounded, of R N . Our approach is based on solving the obstacle problem and using the Harnack inequality.
doi_str_mv 10.1007/s11117-020-00789-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542136536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542136536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6810cf505c3eb371d5e431c30321b5794c7a5f42ffde1b2239fd67138e243f1e3</originalsourceid><addsrcrecordid>eNp9UMlOwzAUtBBIlMIPcLLE2eAlznJEZZUq9QCcrcR5Lq7cJLUTJHLiH_hDvgRDKnHjXd6imXmaQeic0UtGaXYVWKyMUE5JXPOCjAdoxmTGScFzdhhnkUvCeMGP0UkIG0ojLaEzBE9t1Tp4-_r4vLHe6lcHPe58WznYYtN6vBvKYJ1toPQYnLNdbzWGeO1t2wRsG7yGBnzp7Ag1Xnln9RjF9rI4dKWGcIqOTOkCnO37HL3c3T4vHshydf-4uF4SLVjRkzRnVBtJpRZQiYzVEhLBtKCCs0pmRaKzUpqEG1MDqzgXhanTLFoDngjDQMzRxaQbHewGCL3atINv4kvFZcKZSKVII4pPKO3bEDwY1Xm7Lf27YlT9xKmmOFWMU_3GqcZIEhMpRHCzBv8n_Q_rGwhOe_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542136536</pqid></control><display><type>article</type><title>Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Benyaiche, Allami ; Khlifi, Ismail</creator><creatorcontrib>Benyaiche, Allami ; Khlifi, Ismail</creatorcontrib><description>In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev–Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz–Sobolev spaces on domains, not necessarily bounded, of R N . Our approach is based on solving the obstacle problem and using the Harnack inequality.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-020-00789-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Dirichlet problem ; Econometrics ; Elliptic functions ; Fourier Analysis ; Inequality ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Partial differential equations ; Potential Theory ; Sobolev space</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2021-07, Vol.25 (3), p.819-841</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6810cf505c3eb371d5e431c30321b5794c7a5f42ffde1b2239fd67138e243f1e3</citedby><cites>FETCH-LOGICAL-c319t-6810cf505c3eb371d5e431c30321b5794c7a5f42ffde1b2239fd67138e243f1e3</cites><orcidid>0000-0002-8730-4319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-020-00789-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-020-00789-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Benyaiche, Allami</creatorcontrib><creatorcontrib>Khlifi, Ismail</creatorcontrib><title>Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev–Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz–Sobolev spaces on domains, not necessarily bounded, of R N . Our approach is based on solving the obstacle problem and using the Harnack inequality.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Dirichlet problem</subject><subject>Econometrics</subject><subject>Elliptic functions</subject><subject>Fourier Analysis</subject><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Partial differential equations</subject><subject>Potential Theory</subject><subject>Sobolev space</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMlOwzAUtBBIlMIPcLLE2eAlznJEZZUq9QCcrcR5Lq7cJLUTJHLiH_hDvgRDKnHjXd6imXmaQeic0UtGaXYVWKyMUE5JXPOCjAdoxmTGScFzdhhnkUvCeMGP0UkIG0ojLaEzBE9t1Tp4-_r4vLHe6lcHPe58WznYYtN6vBvKYJ1toPQYnLNdbzWGeO1t2wRsG7yGBnzp7Ag1Xnln9RjF9rI4dKWGcIqOTOkCnO37HL3c3T4vHshydf-4uF4SLVjRkzRnVBtJpRZQiYzVEhLBtKCCs0pmRaKzUpqEG1MDqzgXhanTLFoDngjDQMzRxaQbHewGCL3atINv4kvFZcKZSKVII4pPKO3bEDwY1Xm7Lf27YlT9xKmmOFWMU_3GqcZIEhMpRHCzBv8n_Q_rGwhOe_s</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Benyaiche, Allami</creator><creator>Khlifi, Ismail</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8730-4319</orcidid></search><sort><creationdate>20210701</creationdate><title>Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces</title><author>Benyaiche, Allami ; Khlifi, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6810cf505c3eb371d5e431c30321b5794c7a5f42ffde1b2239fd67138e243f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Dirichlet problem</topic><topic>Econometrics</topic><topic>Elliptic functions</topic><topic>Fourier Analysis</topic><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Partial differential equations</topic><topic>Potential Theory</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benyaiche, Allami</creatorcontrib><creatorcontrib>Khlifi, Ismail</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benyaiche, Allami</au><au>Khlifi, Ismail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>25</volume><issue>3</issue><spage>819</spage><epage>841</epage><pages>819-841</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev–Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz–Sobolev spaces on domains, not necessarily bounded, of R N . Our approach is based on solving the obstacle problem and using the Harnack inequality.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-020-00789-z</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8730-4319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2021-07, Vol.25 (3), p.819-841
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_2542136536
source Springer Nature - Complete Springer Journals; Business Source Complete
subjects Calculus of Variations and Optimal Control
Optimization
Dirichlet problem
Econometrics
Elliptic functions
Fourier Analysis
Inequality
Mathematical analysis
Mathematics
Mathematics and Statistics
Operator Theory
Partial differential equations
Potential Theory
Sobolev space
title Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sobolev%E2%80%93Dirichlet%20problem%20for%20quasilinear%20elliptic%20equations%20in%20generalized%20Orlicz%E2%80%93Sobolev%20spaces&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Benyaiche,%20Allami&rft.date=2021-07-01&rft.volume=25&rft.issue=3&rft.spage=819&rft.epage=841&rft.pages=819-841&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-020-00789-z&rft_dat=%3Cproquest_cross%3E2542136536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542136536&rft_id=info:pmid/&rfr_iscdi=true