Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces
In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev–Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz–Sobolev spaces on domains, not necessarily bounded, of R N . Our approach is based on solving the obstacle problem and usi...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2021-07, Vol.25 (3), p.819-841 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 841 |
---|---|
container_issue | 3 |
container_start_page | 819 |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 25 |
creator | Benyaiche, Allami Khlifi, Ismail |
description | In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev–Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz–Sobolev spaces on domains, not necessarily bounded, of
R
N
. Our approach is based on solving the obstacle problem and using the Harnack inequality. |
doi_str_mv | 10.1007/s11117-020-00789-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2542136536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542136536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6810cf505c3eb371d5e431c30321b5794c7a5f42ffde1b2239fd67138e243f1e3</originalsourceid><addsrcrecordid>eNp9UMlOwzAUtBBIlMIPcLLE2eAlznJEZZUq9QCcrcR5Lq7cJLUTJHLiH_hDvgRDKnHjXd6imXmaQeic0UtGaXYVWKyMUE5JXPOCjAdoxmTGScFzdhhnkUvCeMGP0UkIG0ojLaEzBE9t1Tp4-_r4vLHe6lcHPe58WznYYtN6vBvKYJ1toPQYnLNdbzWGeO1t2wRsG7yGBnzp7Ag1Xnln9RjF9rI4dKWGcIqOTOkCnO37HL3c3T4vHshydf-4uF4SLVjRkzRnVBtJpRZQiYzVEhLBtKCCs0pmRaKzUpqEG1MDqzgXhanTLFoDngjDQMzRxaQbHewGCL3atINv4kvFZcKZSKVII4pPKO3bEDwY1Xm7Lf27YlT9xKmmOFWMU_3GqcZIEhMpRHCzBv8n_Q_rGwhOe_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542136536</pqid></control><display><type>article</type><title>Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Benyaiche, Allami ; Khlifi, Ismail</creator><creatorcontrib>Benyaiche, Allami ; Khlifi, Ismail</creatorcontrib><description>In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev–Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz–Sobolev spaces on domains, not necessarily bounded, of
R
N
. Our approach is based on solving the obstacle problem and using the Harnack inequality.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-020-00789-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Dirichlet problem ; Econometrics ; Elliptic functions ; Fourier Analysis ; Inequality ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Partial differential equations ; Potential Theory ; Sobolev space</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2021-07, Vol.25 (3), p.819-841</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6810cf505c3eb371d5e431c30321b5794c7a5f42ffde1b2239fd67138e243f1e3</citedby><cites>FETCH-LOGICAL-c319t-6810cf505c3eb371d5e431c30321b5794c7a5f42ffde1b2239fd67138e243f1e3</cites><orcidid>0000-0002-8730-4319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-020-00789-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-020-00789-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Benyaiche, Allami</creatorcontrib><creatorcontrib>Khlifi, Ismail</creatorcontrib><title>Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev–Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz–Sobolev spaces on domains, not necessarily bounded, of
R
N
. Our approach is based on solving the obstacle problem and using the Harnack inequality.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Dirichlet problem</subject><subject>Econometrics</subject><subject>Elliptic functions</subject><subject>Fourier Analysis</subject><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Partial differential equations</subject><subject>Potential Theory</subject><subject>Sobolev space</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMlOwzAUtBBIlMIPcLLE2eAlznJEZZUq9QCcrcR5Lq7cJLUTJHLiH_hDvgRDKnHjXd6imXmaQeic0UtGaXYVWKyMUE5JXPOCjAdoxmTGScFzdhhnkUvCeMGP0UkIG0ojLaEzBE9t1Tp4-_r4vLHe6lcHPe58WznYYtN6vBvKYJ1toPQYnLNdbzWGeO1t2wRsG7yGBnzp7Ag1Xnln9RjF9rI4dKWGcIqOTOkCnO37HL3c3T4vHshydf-4uF4SLVjRkzRnVBtJpRZQiYzVEhLBtKCCs0pmRaKzUpqEG1MDqzgXhanTLFoDngjDQMzRxaQbHewGCL3atINv4kvFZcKZSKVII4pPKO3bEDwY1Xm7Lf27YlT9xKmmOFWMU_3GqcZIEhMpRHCzBv8n_Q_rGwhOe_s</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Benyaiche, Allami</creator><creator>Khlifi, Ismail</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8730-4319</orcidid></search><sort><creationdate>20210701</creationdate><title>Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces</title><author>Benyaiche, Allami ; Khlifi, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6810cf505c3eb371d5e431c30321b5794c7a5f42ffde1b2239fd67138e243f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Dirichlet problem</topic><topic>Econometrics</topic><topic>Elliptic functions</topic><topic>Fourier Analysis</topic><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Partial differential equations</topic><topic>Potential Theory</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benyaiche, Allami</creatorcontrib><creatorcontrib>Khlifi, Ismail</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benyaiche, Allami</au><au>Khlifi, Ismail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>25</volume><issue>3</issue><spage>819</spage><epage>841</epage><pages>819-841</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev–Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz–Sobolev spaces on domains, not necessarily bounded, of
R
N
. Our approach is based on solving the obstacle problem and using the Harnack inequality.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-020-00789-z</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8730-4319</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2021-07, Vol.25 (3), p.819-841 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_2542136536 |
source | Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Calculus of Variations and Optimal Control Optimization Dirichlet problem Econometrics Elliptic functions Fourier Analysis Inequality Mathematical analysis Mathematics Mathematics and Statistics Operator Theory Partial differential equations Potential Theory Sobolev space |
title | Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sobolev%E2%80%93Dirichlet%20problem%20for%20quasilinear%20elliptic%20equations%20in%20generalized%20Orlicz%E2%80%93Sobolev%20spaces&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Benyaiche,%20Allami&rft.date=2021-07-01&rft.volume=25&rft.issue=3&rft.spage=819&rft.epage=841&rft.pages=819-841&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-020-00789-z&rft_dat=%3Cproquest_cross%3E2542136536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542136536&rft_id=info:pmid/&rfr_iscdi=true |