CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark
Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhang, Ningyu Chen, Mosha Bi, Zhen Liang, Xiaozhuan Li, Lei Shang, Xin Yin, Kangping Tan, Chuanqi Xu, Jian Huang, Fei Luo Si Ni, Yuan Xie, Guotong Sui, Zhifang Chang, Baobao Zong, Hui Zheng, Yuan Li, Linfeng Yan, Jun Zan, Hongying Zhang, Kunli Tang, Buzhou Chen, Qingcai |
description | Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling. Our benchmark is released at \url{https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414&lang=en-us}. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2541581259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541581259</sourcerecordid><originalsourceid>FETCH-proquest_journals_25415812593</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_EMTZxIoVNFNCOrAKDN5gScU4VVb6vfr4Ac43eHcBfNEHEdBmgixYr61QxiGYrcXUsYeu-RZWRVHfuJ5rwgt8kzpCVvVwMhLoM5Bh7yiFo2dgVpFHS_eMDqYlSaeITX9BOaxYcs7jBb9X9dsey5u-TV4Gv1yaOd60M7Ql2ohk0imkZCH-L_rA1VwOqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541581259</pqid></control><display><type>article</type><title>CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark</title><source>Free E- Journals</source><creator>Zhang, Ningyu ; Chen, Mosha ; Bi, Zhen ; Liang, Xiaozhuan ; Li, Lei ; Shang, Xin ; Yin, Kangping ; Tan, Chuanqi ; Xu, Jian ; Huang, Fei ; Luo Si ; Ni, Yuan ; Xie, Guotong ; Sui, Zhifang ; Chang, Baobao ; Zong, Hui ; Zheng, Yuan ; Li, Linfeng ; Yan, Jun ; Zan, Hongying ; Zhang, Kunli ; Tang, Buzhou ; Chen, Qingcai</creator><creatorcontrib>Zhang, Ningyu ; Chen, Mosha ; Bi, Zhen ; Liang, Xiaozhuan ; Li, Lei ; Shang, Xin ; Yin, Kangping ; Tan, Chuanqi ; Xu, Jian ; Huang, Fei ; Luo Si ; Ni, Yuan ; Xie, Guotong ; Sui, Zhifang ; Chang, Baobao ; Zong, Hui ; Zheng, Yuan ; Li, Linfeng ; Yan, Jun ; Zan, Hongying ; Zhang, Kunli ; Tang, Buzhou ; Chen, Qingcai</creatorcontrib><description>Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling. Our benchmark is released at \url{https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414&lang=en-us}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Benchmarks ; Biomedical data ; Empirical analysis ; English language ; Evaluation ; Information retrieval ; Language</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhang, Ningyu</creatorcontrib><creatorcontrib>Chen, Mosha</creatorcontrib><creatorcontrib>Bi, Zhen</creatorcontrib><creatorcontrib>Liang, Xiaozhuan</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Shang, Xin</creatorcontrib><creatorcontrib>Yin, Kangping</creatorcontrib><creatorcontrib>Tan, Chuanqi</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Luo Si</creatorcontrib><creatorcontrib>Ni, Yuan</creatorcontrib><creatorcontrib>Xie, Guotong</creatorcontrib><creatorcontrib>Sui, Zhifang</creatorcontrib><creatorcontrib>Chang, Baobao</creatorcontrib><creatorcontrib>Zong, Hui</creatorcontrib><creatorcontrib>Zheng, Yuan</creatorcontrib><creatorcontrib>Li, Linfeng</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Zan, Hongying</creatorcontrib><creatorcontrib>Zhang, Kunli</creatorcontrib><creatorcontrib>Tang, Buzhou</creatorcontrib><creatorcontrib>Chen, Qingcai</creatorcontrib><title>CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark</title><title>arXiv.org</title><description>Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling. Our benchmark is released at \url{https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414&lang=en-us}.</description><subject>Artificial intelligence</subject><subject>Benchmarks</subject><subject>Biomedical data</subject><subject>Empirical analysis</subject><subject>English language</subject><subject>Evaluation</subject><subject>Information retrieval</subject><subject>Language</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_EMTZxIoVNFNCOrAKDN5gScU4VVb6vfr4Ac43eHcBfNEHEdBmgixYr61QxiGYrcXUsYeu-RZWRVHfuJ5rwgt8kzpCVvVwMhLoM5Bh7yiFo2dgVpFHS_eMDqYlSaeITX9BOaxYcs7jBb9X9dsey5u-TV4Gv1yaOd60M7Ql2ohk0imkZCH-L_rA1VwOqs</recordid><startdate>20220307</startdate><enddate>20220307</enddate><creator>Zhang, Ningyu</creator><creator>Chen, Mosha</creator><creator>Bi, Zhen</creator><creator>Liang, Xiaozhuan</creator><creator>Li, Lei</creator><creator>Shang, Xin</creator><creator>Yin, Kangping</creator><creator>Tan, Chuanqi</creator><creator>Xu, Jian</creator><creator>Huang, Fei</creator><creator>Luo Si</creator><creator>Ni, Yuan</creator><creator>Xie, Guotong</creator><creator>Sui, Zhifang</creator><creator>Chang, Baobao</creator><creator>Zong, Hui</creator><creator>Zheng, Yuan</creator><creator>Li, Linfeng</creator><creator>Yan, Jun</creator><creator>Zan, Hongying</creator><creator>Zhang, Kunli</creator><creator>Tang, Buzhou</creator><creator>Chen, Qingcai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220307</creationdate><title>CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark</title><author>Zhang, Ningyu ; Chen, Mosha ; Bi, Zhen ; Liang, Xiaozhuan ; Li, Lei ; Shang, Xin ; Yin, Kangping ; Tan, Chuanqi ; Xu, Jian ; Huang, Fei ; Luo Si ; Ni, Yuan ; Xie, Guotong ; Sui, Zhifang ; Chang, Baobao ; Zong, Hui ; Zheng, Yuan ; Li, Linfeng ; Yan, Jun ; Zan, Hongying ; Zhang, Kunli ; Tang, Buzhou ; Chen, Qingcai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25415812593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Benchmarks</topic><topic>Biomedical data</topic><topic>Empirical analysis</topic><topic>English language</topic><topic>Evaluation</topic><topic>Information retrieval</topic><topic>Language</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ningyu</creatorcontrib><creatorcontrib>Chen, Mosha</creatorcontrib><creatorcontrib>Bi, Zhen</creatorcontrib><creatorcontrib>Liang, Xiaozhuan</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Shang, Xin</creatorcontrib><creatorcontrib>Yin, Kangping</creatorcontrib><creatorcontrib>Tan, Chuanqi</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Luo Si</creatorcontrib><creatorcontrib>Ni, Yuan</creatorcontrib><creatorcontrib>Xie, Guotong</creatorcontrib><creatorcontrib>Sui, Zhifang</creatorcontrib><creatorcontrib>Chang, Baobao</creatorcontrib><creatorcontrib>Zong, Hui</creatorcontrib><creatorcontrib>Zheng, Yuan</creatorcontrib><creatorcontrib>Li, Linfeng</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Zan, Hongying</creatorcontrib><creatorcontrib>Zhang, Kunli</creatorcontrib><creatorcontrib>Tang, Buzhou</creatorcontrib><creatorcontrib>Chen, Qingcai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ningyu</au><au>Chen, Mosha</au><au>Bi, Zhen</au><au>Liang, Xiaozhuan</au><au>Li, Lei</au><au>Shang, Xin</au><au>Yin, Kangping</au><au>Tan, Chuanqi</au><au>Xu, Jian</au><au>Huang, Fei</au><au>Luo Si</au><au>Ni, Yuan</au><au>Xie, Guotong</au><au>Sui, Zhifang</au><au>Chang, Baobao</au><au>Zong, Hui</au><au>Zheng, Yuan</au><au>Li, Linfeng</au><au>Yan, Jun</au><au>Zan, Hongying</au><au>Zhang, Kunli</au><au>Tang, Buzhou</au><au>Chen, Qingcai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark</atitle><jtitle>arXiv.org</jtitle><date>2022-03-07</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling. Our benchmark is released at \url{https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414&lang=en-us}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2541581259 |
source | Free E- Journals |
subjects | Artificial intelligence Benchmarks Biomedical data Empirical analysis English language Evaluation Information retrieval Language |
title | CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CBLUE:%20A%20Chinese%20Biomedical%20Language%20Understanding%20Evaluation%20Benchmark&rft.jtitle=arXiv.org&rft.au=Zhang,%20Ningyu&rft.date=2022-03-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2541581259%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541581259&rft_id=info:pmid/&rfr_iscdi=true |