CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark

Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Zhang, Ningyu, Chen, Mosha, Bi, Zhen, Liang, Xiaozhuan, Li, Lei, Shang, Xin, Yin, Kangping, Tan, Chuanqi, Xu, Jian, Huang, Fei, Luo Si, Ni, Yuan, Xie, Guotong, Sui, Zhifang, Chang, Baobao, Zong, Hui, Zheng, Yuan, Li, Linfeng, Yan, Jun, Zan, Hongying, Zhang, Kunli, Tang, Buzhou, Chen, Qingcai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Ningyu
Chen, Mosha
Bi, Zhen
Liang, Xiaozhuan
Li, Lei
Shang, Xin
Yin, Kangping
Tan, Chuanqi
Xu, Jian
Huang, Fei
Luo Si
Ni, Yuan
Xie, Guotong
Sui, Zhifang
Chang, Baobao
Zong, Hui
Zheng, Yuan
Li, Linfeng
Yan, Jun
Zan, Hongying
Zhang, Kunli
Tang, Buzhou
Chen, Qingcai
description Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling. Our benchmark is released at \url{https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414&lang=en-us}.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2541581259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541581259</sourcerecordid><originalsourceid>FETCH-proquest_journals_25415812593</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_EMTZxIoVNFNCOrAKDN5gScU4VVb6vfr4Ac43eHcBfNEHEdBmgixYr61QxiGYrcXUsYeu-RZWRVHfuJ5rwgt8kzpCVvVwMhLoM5Bh7yiFo2dgVpFHS_eMDqYlSaeITX9BOaxYcs7jBb9X9dsey5u-TV4Gv1yaOd60M7Ql2ohk0imkZCH-L_rA1VwOqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541581259</pqid></control><display><type>article</type><title>CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark</title><source>Free E- Journals</source><creator>Zhang, Ningyu ; Chen, Mosha ; Bi, Zhen ; Liang, Xiaozhuan ; Li, Lei ; Shang, Xin ; Yin, Kangping ; Tan, Chuanqi ; Xu, Jian ; Huang, Fei ; Luo Si ; Ni, Yuan ; Xie, Guotong ; Sui, Zhifang ; Chang, Baobao ; Zong, Hui ; Zheng, Yuan ; Li, Linfeng ; Yan, Jun ; Zan, Hongying ; Zhang, Kunli ; Tang, Buzhou ; Chen, Qingcai</creator><creatorcontrib>Zhang, Ningyu ; Chen, Mosha ; Bi, Zhen ; Liang, Xiaozhuan ; Li, Lei ; Shang, Xin ; Yin, Kangping ; Tan, Chuanqi ; Xu, Jian ; Huang, Fei ; Luo Si ; Ni, Yuan ; Xie, Guotong ; Sui, Zhifang ; Chang, Baobao ; Zong, Hui ; Zheng, Yuan ; Li, Linfeng ; Yan, Jun ; Zan, Hongying ; Zhang, Kunli ; Tang, Buzhou ; Chen, Qingcai</creatorcontrib><description>Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling. Our benchmark is released at \url{https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414&amp;lang=en-us}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Benchmarks ; Biomedical data ; Empirical analysis ; English language ; Evaluation ; Information retrieval ; Language</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhang, Ningyu</creatorcontrib><creatorcontrib>Chen, Mosha</creatorcontrib><creatorcontrib>Bi, Zhen</creatorcontrib><creatorcontrib>Liang, Xiaozhuan</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Shang, Xin</creatorcontrib><creatorcontrib>Yin, Kangping</creatorcontrib><creatorcontrib>Tan, Chuanqi</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Luo Si</creatorcontrib><creatorcontrib>Ni, Yuan</creatorcontrib><creatorcontrib>Xie, Guotong</creatorcontrib><creatorcontrib>Sui, Zhifang</creatorcontrib><creatorcontrib>Chang, Baobao</creatorcontrib><creatorcontrib>Zong, Hui</creatorcontrib><creatorcontrib>Zheng, Yuan</creatorcontrib><creatorcontrib>Li, Linfeng</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Zan, Hongying</creatorcontrib><creatorcontrib>Zhang, Kunli</creatorcontrib><creatorcontrib>Tang, Buzhou</creatorcontrib><creatorcontrib>Chen, Qingcai</creatorcontrib><title>CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark</title><title>arXiv.org</title><description>Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling. Our benchmark is released at \url{https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414&amp;lang=en-us}.</description><subject>Artificial intelligence</subject><subject>Benchmarks</subject><subject>Biomedical data</subject><subject>Empirical analysis</subject><subject>English language</subject><subject>Evaluation</subject><subject>Information retrieval</subject><subject>Language</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_EMTZxIoVNFNCOrAKDN5gScU4VVb6vfr4Ac43eHcBfNEHEdBmgixYr61QxiGYrcXUsYeu-RZWRVHfuJ5rwgt8kzpCVvVwMhLoM5Bh7yiFo2dgVpFHS_eMDqYlSaeITX9BOaxYcs7jBb9X9dsey5u-TV4Gv1yaOd60M7Ql2ohk0imkZCH-L_rA1VwOqs</recordid><startdate>20220307</startdate><enddate>20220307</enddate><creator>Zhang, Ningyu</creator><creator>Chen, Mosha</creator><creator>Bi, Zhen</creator><creator>Liang, Xiaozhuan</creator><creator>Li, Lei</creator><creator>Shang, Xin</creator><creator>Yin, Kangping</creator><creator>Tan, Chuanqi</creator><creator>Xu, Jian</creator><creator>Huang, Fei</creator><creator>Luo Si</creator><creator>Ni, Yuan</creator><creator>Xie, Guotong</creator><creator>Sui, Zhifang</creator><creator>Chang, Baobao</creator><creator>Zong, Hui</creator><creator>Zheng, Yuan</creator><creator>Li, Linfeng</creator><creator>Yan, Jun</creator><creator>Zan, Hongying</creator><creator>Zhang, Kunli</creator><creator>Tang, Buzhou</creator><creator>Chen, Qingcai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220307</creationdate><title>CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark</title><author>Zhang, Ningyu ; Chen, Mosha ; Bi, Zhen ; Liang, Xiaozhuan ; Li, Lei ; Shang, Xin ; Yin, Kangping ; Tan, Chuanqi ; Xu, Jian ; Huang, Fei ; Luo Si ; Ni, Yuan ; Xie, Guotong ; Sui, Zhifang ; Chang, Baobao ; Zong, Hui ; Zheng, Yuan ; Li, Linfeng ; Yan, Jun ; Zan, Hongying ; Zhang, Kunli ; Tang, Buzhou ; Chen, Qingcai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25415812593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Benchmarks</topic><topic>Biomedical data</topic><topic>Empirical analysis</topic><topic>English language</topic><topic>Evaluation</topic><topic>Information retrieval</topic><topic>Language</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ningyu</creatorcontrib><creatorcontrib>Chen, Mosha</creatorcontrib><creatorcontrib>Bi, Zhen</creatorcontrib><creatorcontrib>Liang, Xiaozhuan</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Shang, Xin</creatorcontrib><creatorcontrib>Yin, Kangping</creatorcontrib><creatorcontrib>Tan, Chuanqi</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Luo Si</creatorcontrib><creatorcontrib>Ni, Yuan</creatorcontrib><creatorcontrib>Xie, Guotong</creatorcontrib><creatorcontrib>Sui, Zhifang</creatorcontrib><creatorcontrib>Chang, Baobao</creatorcontrib><creatorcontrib>Zong, Hui</creatorcontrib><creatorcontrib>Zheng, Yuan</creatorcontrib><creatorcontrib>Li, Linfeng</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Zan, Hongying</creatorcontrib><creatorcontrib>Zhang, Kunli</creatorcontrib><creatorcontrib>Tang, Buzhou</creatorcontrib><creatorcontrib>Chen, Qingcai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ningyu</au><au>Chen, Mosha</au><au>Bi, Zhen</au><au>Liang, Xiaozhuan</au><au>Li, Lei</au><au>Shang, Xin</au><au>Yin, Kangping</au><au>Tan, Chuanqi</au><au>Xu, Jian</au><au>Huang, Fei</au><au>Luo Si</au><au>Ni, Yuan</au><au>Xie, Guotong</au><au>Sui, Zhifang</au><au>Chang, Baobao</au><au>Zong, Hui</au><au>Zheng, Yuan</au><au>Li, Linfeng</au><au>Yan, Jun</au><au>Zan, Hongying</au><au>Zhang, Kunli</au><au>Tang, Buzhou</au><au>Chen, Qingcai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark</atitle><jtitle>arXiv.org</jtitle><date>2022-03-07</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling. Our benchmark is released at \url{https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414&amp;lang=en-us}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2541581259
source Free E- Journals
subjects Artificial intelligence
Benchmarks
Biomedical data
Empirical analysis
English language
Evaluation
Information retrieval
Language
title CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CBLUE:%20A%20Chinese%20Biomedical%20Language%20Understanding%20Evaluation%20Benchmark&rft.jtitle=arXiv.org&rft.au=Zhang,%20Ningyu&rft.date=2022-03-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2541581259%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541581259&rft_id=info:pmid/&rfr_iscdi=true