Geometrical and group properties of discrete analogs of the center-of-mass and the cluster tomograms

We adopt methods of symplectic tomography and discrete phase space for the description of states of discrete variable quantum systems (qudits). The proposed tomographic functions are constructed as generalized analogs of the center-of-mass and the cluster tomograms and associated with finite linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Avanesov, A. S., Manko, V. I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2362
creator Avanesov, A. S.
Manko, V. I.
description We adopt methods of symplectic tomography and discrete phase space for the description of states of discrete variable quantum systems (qudits). The proposed tomographic functions are constructed as generalized analogs of the center-of-mass and the cluster tomograms and associated with finite linear manifolds in the discrete phase space. Hilbert spaces of considered qudits must have the power of a prime dimension, so the corresponding phase spaces are the vector spaces over finite fields. We find conditions for the nonnegativity of the constructed functions and obtain formulae for the density matrix restoration.
doi_str_mv 10.1063/5.0055480
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2541515604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541515604</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1330-8c15a2e268f3340664f8785278f668881afa0442d5c83801680c804eece166e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_8GAO2Hqy-ekSylahYKbLtyFkHkZp8w0Y5IR_PeObcGdqweHcx-XS8gthQUFxR_kAkBKoeGMzKiUtKwUVedkBrAUJRP8_ZJcpbQDYMuq0jNSrzH0mGPrbFfYfV00MYxDMcQwYMwtpiL4om6Ti5hxEmwXmgPLH1g43GeMZfBlb1M6xA-4G9PEixz60ETbp2ty4W2X8OZ052T7_LRdvZSbt_Xr6nFTDpRzKLWj0jJkSnvOBSglvK60ZJX2SmmtqfUWhGC1dJproEqD0yAQHVKlkM_J3fHt1P5zxJTNLoxxqpwMk4JKKhWIybo_Wsm12eY27M0Q297Gb_MVopHmNKAZav-fTMH8Lv4X4D9fQnH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2541515604</pqid></control><display><type>conference_proceeding</type><title>Geometrical and group properties of discrete analogs of the center-of-mass and the cluster tomograms</title><source>AIP Journals Complete</source><creator>Avanesov, A. S. ; Manko, V. I.</creator><contributor>Perelshtein, Mikhail ; Vinokur, Valerii ; Lesovik, Gordey</contributor><creatorcontrib>Avanesov, A. S. ; Manko, V. I. ; Perelshtein, Mikhail ; Vinokur, Valerii ; Lesovik, Gordey</creatorcontrib><description>We adopt methods of symplectic tomography and discrete phase space for the description of states of discrete variable quantum systems (qudits). The proposed tomographic functions are constructed as generalized analogs of the center-of-mass and the cluster tomograms and associated with finite linear manifolds in the discrete phase space. Hilbert spaces of considered qudits must have the power of a prime dimension, so the corresponding phase spaces are the vector spaces over finite fields. We find conditions for the nonnegativity of the constructed functions and obtain formulae for the density matrix restoration.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0055480</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Analogs ; Center of mass ; Clusters ; Fields (mathematics) ; Hilbert space ; Vector spaces</subject><ispartof>AIP Conference Proceedings, 2021, Vol.2362 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0055480$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Perelshtein, Mikhail</contributor><contributor>Vinokur, Valerii</contributor><contributor>Lesovik, Gordey</contributor><creatorcontrib>Avanesov, A. S.</creatorcontrib><creatorcontrib>Manko, V. I.</creatorcontrib><title>Geometrical and group properties of discrete analogs of the center-of-mass and the cluster tomograms</title><title>AIP Conference Proceedings</title><description>We adopt methods of symplectic tomography and discrete phase space for the description of states of discrete variable quantum systems (qudits). The proposed tomographic functions are constructed as generalized analogs of the center-of-mass and the cluster tomograms and associated with finite linear manifolds in the discrete phase space. Hilbert spaces of considered qudits must have the power of a prime dimension, so the corresponding phase spaces are the vector spaces over finite fields. We find conditions for the nonnegativity of the constructed functions and obtain formulae for the density matrix restoration.</description><subject>Analogs</subject><subject>Center of mass</subject><subject>Clusters</subject><subject>Fields (mathematics)</subject><subject>Hilbert space</subject><subject>Vector spaces</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_8GAO2Hqy-ekSylahYKbLtyFkHkZp8w0Y5IR_PeObcGdqweHcx-XS8gthQUFxR_kAkBKoeGMzKiUtKwUVedkBrAUJRP8_ZJcpbQDYMuq0jNSrzH0mGPrbFfYfV00MYxDMcQwYMwtpiL4om6Ti5hxEmwXmgPLH1g43GeMZfBlb1M6xA-4G9PEixz60ETbp2ty4W2X8OZ052T7_LRdvZSbt_Xr6nFTDpRzKLWj0jJkSnvOBSglvK60ZJX2SmmtqfUWhGC1dJproEqD0yAQHVKlkM_J3fHt1P5zxJTNLoxxqpwMk4JKKhWIybo_Wsm12eY27M0Q297Gb_MVopHmNKAZav-fTMH8Lv4X4D9fQnH8</recordid><startdate>20210616</startdate><enddate>20210616</enddate><creator>Avanesov, A. S.</creator><creator>Manko, V. I.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210616</creationdate><title>Geometrical and group properties of discrete analogs of the center-of-mass and the cluster tomograms</title><author>Avanesov, A. S. ; Manko, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1330-8c15a2e268f3340664f8785278f668881afa0442d5c83801680c804eece166e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analogs</topic><topic>Center of mass</topic><topic>Clusters</topic><topic>Fields (mathematics)</topic><topic>Hilbert space</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avanesov, A. S.</creatorcontrib><creatorcontrib>Manko, V. I.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avanesov, A. S.</au><au>Manko, V. I.</au><au>Perelshtein, Mikhail</au><au>Vinokur, Valerii</au><au>Lesovik, Gordey</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Geometrical and group properties of discrete analogs of the center-of-mass and the cluster tomograms</atitle><btitle>AIP Conference Proceedings</btitle><date>2021-06-16</date><risdate>2021</risdate><volume>2362</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We adopt methods of symplectic tomography and discrete phase space for the description of states of discrete variable quantum systems (qudits). The proposed tomographic functions are constructed as generalized analogs of the center-of-mass and the cluster tomograms and associated with finite linear manifolds in the discrete phase space. Hilbert spaces of considered qudits must have the power of a prime dimension, so the corresponding phase spaces are the vector spaces over finite fields. We find conditions for the nonnegativity of the constructed functions and obtain formulae for the density matrix restoration.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0055480</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2021, Vol.2362 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2541515604
source AIP Journals Complete
subjects Analogs
Center of mass
Clusters
Fields (mathematics)
Hilbert space
Vector spaces
title Geometrical and group properties of discrete analogs of the center-of-mass and the cluster tomograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Geometrical%20and%20group%20properties%20of%20discrete%20analogs%20of%20the%20center-of-mass%20and%20the%20cluster%20tomograms&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Avanesov,%20A.%20S.&rft.date=2021-06-16&rft.volume=2362&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0055480&rft_dat=%3Cproquest_scita%3E2541515604%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541515604&rft_id=info:pmid/&rfr_iscdi=true