A Camera and LiDAR Data Fusion Method for Railway Object Detection
Object detection on railway tracks, which is crucial for train operational safety, face numerous challenges such as multiple types of objects and the complexity of train running environment. In this study, a multi-sensor framework is proposed to fuse camera and LiDAR data for the detection of object...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-06, Vol.21 (12), p.13442-13454 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13454 |
---|---|
container_issue | 12 |
container_start_page | 13442 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Zhangyu, Wang Guizhen, Yu Xinkai, Wu Haoran, Li Da, Li |
description | Object detection on railway tracks, which is crucial for train operational safety, face numerous challenges such as multiple types of objects and the complexity of train running environment. In this study, a multi-sensor framework is proposed to fuse camera and LiDAR data for the detection of objects on railway track including small obstacles and forward trains. The framework involves a two-stage process: region of interest extraction and object detection. In the first stage, a multi-scale prediction network is designed to achieve pixel level segmentation of the railway track and forward train via the image. In the second stage, LiDAR data is used to estimate the distance to the train and detect small obstacles in the railway track area which is extracted from the first stage. Experimental results show that the region of interest extraction method achieves desirable accuracy for railway track and train segmentation; and the proposed fusion method outperforms the one based on camera or LiDAR alone for small obstacles and forward train detection. Moreover, in practice the proposed framework has been successfully applied on the Hong Kong Metro TSUEN WAN line and the Beijing Metro YANFANG line. |
doi_str_mv | 10.1109/JSEN.2021.3066714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2541470237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9380436</ieee_id><sourcerecordid>2541470237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-77f454f5df4959d27b32e7910012923ccf2cc75df017525c6d784f4a311ded683</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKsPIN4EvN6ayWGzuaw9eKBaqArehTQH3NJ2a7JF-vZmqXg1A_P9M8OH0DWQAQBRd89vk9cBJRQGjJSlBH6CeiBEVYDk1WnXM1JwJj_P0UVKK0JASSF76H6IR2bjo8Fm6_CsHg8XeGxag6f7VDdb_OLbr8bh0ES8MPX6xxzwfLnytsVj3-aSmUt0Fsw6-au_2kcf08n76LGYzR-eRsNZYRmHtpAycMGDcIEroRyVS0a9VJBfoYoyawO1VuYxASmosKWTFQ_cMADnXVmxPro97t3F5nvvU6tXzT5u80lNBQcuCWUyU3CkbGxSij7oXaw3Jh40EN2p0p0q3anSf6py5uaYqb33_7xiFeGsZL9TCmIH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541470237</pqid></control><display><type>article</type><title>A Camera and LiDAR Data Fusion Method for Railway Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zhangyu, Wang ; Guizhen, Yu ; Xinkai, Wu ; Haoran, Li ; Da, Li</creator><creatorcontrib>Zhangyu, Wang ; Guizhen, Yu ; Xinkai, Wu ; Haoran, Li ; Da, Li</creatorcontrib><description>Object detection on railway tracks, which is crucial for train operational safety, face numerous challenges such as multiple types of objects and the complexity of train running environment. In this study, a multi-sensor framework is proposed to fuse camera and LiDAR data for the detection of objects on railway track including small obstacles and forward trains. The framework involves a two-stage process: region of interest extraction and object detection. In the first stage, a multi-scale prediction network is designed to achieve pixel level segmentation of the railway track and forward train via the image. In the second stage, LiDAR data is used to estimate the distance to the train and detect small obstacles in the railway track area which is extracted from the first stage. Experimental results show that the region of interest extraction method achieves desirable accuracy for railway track and train segmentation; and the proposed fusion method outperforms the one based on camera or LiDAR alone for small obstacles and forward train detection. Moreover, in practice the proposed framework has been successfully applied on the Hong Kong Metro TSUEN WAN line and the Beijing Metro YANFANG line.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3066714</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Barriers ; Cameras ; Data fusion ; Data integration ; Feature extraction ; Image segmentation ; Laser radar ; LiDAR ; Object detection ; Object recognition ; Rail transportation ; railway ; Railway tracks ; Sensors ; Subways ; Trains ; vision</subject><ispartof>IEEE sensors journal, 2021-06, Vol.21 (12), p.13442-13454</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-77f454f5df4959d27b32e7910012923ccf2cc75df017525c6d784f4a311ded683</citedby><cites>FETCH-LOGICAL-c341t-77f454f5df4959d27b32e7910012923ccf2cc75df017525c6d784f4a311ded683</cites><orcidid>0000-0001-9546-7655 ; 0000-0001-8374-7422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9380436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9380436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhangyu, Wang</creatorcontrib><creatorcontrib>Guizhen, Yu</creatorcontrib><creatorcontrib>Xinkai, Wu</creatorcontrib><creatorcontrib>Haoran, Li</creatorcontrib><creatorcontrib>Da, Li</creatorcontrib><title>A Camera and LiDAR Data Fusion Method for Railway Object Detection</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Object detection on railway tracks, which is crucial for train operational safety, face numerous challenges such as multiple types of objects and the complexity of train running environment. In this study, a multi-sensor framework is proposed to fuse camera and LiDAR data for the detection of objects on railway track including small obstacles and forward trains. The framework involves a two-stage process: region of interest extraction and object detection. In the first stage, a multi-scale prediction network is designed to achieve pixel level segmentation of the railway track and forward train via the image. In the second stage, LiDAR data is used to estimate the distance to the train and detect small obstacles in the railway track area which is extracted from the first stage. Experimental results show that the region of interest extraction method achieves desirable accuracy for railway track and train segmentation; and the proposed fusion method outperforms the one based on camera or LiDAR alone for small obstacles and forward train detection. Moreover, in practice the proposed framework has been successfully applied on the Hong Kong Metro TSUEN WAN line and the Beijing Metro YANFANG line.</description><subject>Barriers</subject><subject>Cameras</subject><subject>Data fusion</subject><subject>Data integration</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>LiDAR</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Rail transportation</subject><subject>railway</subject><subject>Railway tracks</subject><subject>Sensors</subject><subject>Subways</subject><subject>Trains</subject><subject>vision</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEQhoMoWKsPIN4EvN6ayWGzuaw9eKBaqArehTQH3NJ2a7JF-vZmqXg1A_P9M8OH0DWQAQBRd89vk9cBJRQGjJSlBH6CeiBEVYDk1WnXM1JwJj_P0UVKK0JASSF76H6IR2bjo8Fm6_CsHg8XeGxag6f7VDdb_OLbr8bh0ES8MPX6xxzwfLnytsVj3-aSmUt0Fsw6-au_2kcf08n76LGYzR-eRsNZYRmHtpAycMGDcIEroRyVS0a9VJBfoYoyawO1VuYxASmosKWTFQ_cMADnXVmxPro97t3F5nvvU6tXzT5u80lNBQcuCWUyU3CkbGxSij7oXaw3Jh40EN2p0p0q3anSf6py5uaYqb33_7xiFeGsZL9TCmIH</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Zhangyu, Wang</creator><creator>Guizhen, Yu</creator><creator>Xinkai, Wu</creator><creator>Haoran, Li</creator><creator>Da, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9546-7655</orcidid><orcidid>https://orcid.org/0000-0001-8374-7422</orcidid></search><sort><creationdate>20210615</creationdate><title>A Camera and LiDAR Data Fusion Method for Railway Object Detection</title><author>Zhangyu, Wang ; Guizhen, Yu ; Xinkai, Wu ; Haoran, Li ; Da, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-77f454f5df4959d27b32e7910012923ccf2cc75df017525c6d784f4a311ded683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barriers</topic><topic>Cameras</topic><topic>Data fusion</topic><topic>Data integration</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>LiDAR</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Rail transportation</topic><topic>railway</topic><topic>Railway tracks</topic><topic>Sensors</topic><topic>Subways</topic><topic>Trains</topic><topic>vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhangyu, Wang</creatorcontrib><creatorcontrib>Guizhen, Yu</creatorcontrib><creatorcontrib>Xinkai, Wu</creatorcontrib><creatorcontrib>Haoran, Li</creatorcontrib><creatorcontrib>Da, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhangyu, Wang</au><au>Guizhen, Yu</au><au>Xinkai, Wu</au><au>Haoran, Li</au><au>Da, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Camera and LiDAR Data Fusion Method for Railway Object Detection</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-06-15</date><risdate>2021</risdate><volume>21</volume><issue>12</issue><spage>13442</spage><epage>13454</epage><pages>13442-13454</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Object detection on railway tracks, which is crucial for train operational safety, face numerous challenges such as multiple types of objects and the complexity of train running environment. In this study, a multi-sensor framework is proposed to fuse camera and LiDAR data for the detection of objects on railway track including small obstacles and forward trains. The framework involves a two-stage process: region of interest extraction and object detection. In the first stage, a multi-scale prediction network is designed to achieve pixel level segmentation of the railway track and forward train via the image. In the second stage, LiDAR data is used to estimate the distance to the train and detect small obstacles in the railway track area which is extracted from the first stage. Experimental results show that the region of interest extraction method achieves desirable accuracy for railway track and train segmentation; and the proposed fusion method outperforms the one based on camera or LiDAR alone for small obstacles and forward train detection. Moreover, in practice the proposed framework has been successfully applied on the Hong Kong Metro TSUEN WAN line and the Beijing Metro YANFANG line.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3066714</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9546-7655</orcidid><orcidid>https://orcid.org/0000-0001-8374-7422</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-06, Vol.21 (12), p.13442-13454 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2541470237 |
source | IEEE Electronic Library (IEL) |
subjects | Barriers Cameras Data fusion Data integration Feature extraction Image segmentation Laser radar LiDAR Object detection Object recognition Rail transportation railway Railway tracks Sensors Subways Trains vision |
title | A Camera and LiDAR Data Fusion Method for Railway Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Camera%20and%20LiDAR%20Data%20Fusion%20Method%20for%20Railway%20Object%20Detection&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhangyu,%20Wang&rft.date=2021-06-15&rft.volume=21&rft.issue=12&rft.spage=13442&rft.epage=13454&rft.pages=13442-13454&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3066714&rft_dat=%3Cproquest_RIE%3E2541470237%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541470237&rft_id=info:pmid/&rft_ieee_id=9380436&rfr_iscdi=true |