A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes

Achieving high capacitance at high current density is one of the challenges for battery electrode materials to practical applications, especially for metal oxide electrode materials. Herein, we designed a unique corn-like architecture composed of Se-doped carbon load Fe 3 O 4 particles (C/Se-L-Fe 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2021, Vol.27 (7), p.2825-2833
Hauptverfasser: Hou, Li, Deng, Shuolei, Jiang, Yang, Cui, Ruiwen, Zhou, Yanyan, Guo, Yuanyuan, Gao, Faming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2833
container_issue 7
container_start_page 2825
container_title Ionics
container_volume 27
creator Hou, Li
Deng, Shuolei
Jiang, Yang
Cui, Ruiwen
Zhou, Yanyan
Guo, Yuanyuan
Gao, Faming
description Achieving high capacitance at high current density is one of the challenges for battery electrode materials to practical applications, especially for metal oxide electrode materials. Herein, we designed a unique corn-like architecture composed of Se-doped carbon load Fe 3 O 4 particles (C/Se-L-Fe 3 O 4 ) through a strategy of simple displacement reaction. In this corn-like structure, the selenium-doped rod-shaped carbon provides a fast electron transport network, and the Fe 3 O 4 nanoparticles anchored on the surface of Se-doped carbon rod, which can have direct contact with the electrolyte, thus greatly shortening the ion transmission path. Benefiting from these advantages, C/Se-L-Fe 3 O 4 electrodes exhibit good stability and an ultrahigh specific capacity of 942.2 mAh g −1 after 600 cycles at 1 A g −1 . Especially, under a high current density of 5 A g −1 , a specific capacity of ca. 443 mAh g −1 is still retained, which is much higher than that of reported carbon-coated metal oxide electrode materials, confirming its excellent rate capability. The optimized structure and facile fabrication method provide a promising way for the utilization of transition metal oxides as high-performance and long life energy storage materials.
doi_str_mv 10.1007/s11581-021-04049-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2541347069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541347069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-17257a8f7ed45c02166f465d7084162d341793161666078e4bc5c65b945afcc13</originalsourceid><addsrcrecordid>eNp9ULFOwzAQtRBIlMIPMFliNtiOYydjVVFAqtQBmC3HcRqXJA62M3Ti13EJEhvD6U5P793dewDcEnxPMBYPgZC8IAjTVAyzEtEzsCAFpwgLjs_BApdMIIGZuARXIRww5pxQsQBfKzgN9nMyUDs_oM5-GKi8bm00Ok7-BPejC6aGroGvBtVuTLNWvnID7Jyq4cZkOwZH5aPVnQlQBdjafYtG4xvnezVoAzsbWzv1yCZRpWI0_gjV4GoTrsFFo7pgbn77ErxvHt_Wz2i7e3pZr7ZIZ6SMiAiaC1U0wtQs18km5w3jeS1wwQindcaIKDPCE86xKAyrdK55XpUsV43WJFuCu3nv6F1yG6I8uMkP6aSkOSMZE5iXiUVnlvYuBG8aOXrbK3-UBMtT0HIOWqYP5E_QkiZRNotCIg974_9W_6P6BrjmgH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541347069</pqid></control><display><type>article</type><title>A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes</title><source>SpringerLink Journals</source><creator>Hou, Li ; Deng, Shuolei ; Jiang, Yang ; Cui, Ruiwen ; Zhou, Yanyan ; Guo, Yuanyuan ; Gao, Faming</creator><creatorcontrib>Hou, Li ; Deng, Shuolei ; Jiang, Yang ; Cui, Ruiwen ; Zhou, Yanyan ; Guo, Yuanyuan ; Gao, Faming</creatorcontrib><description>Achieving high capacitance at high current density is one of the challenges for battery electrode materials to practical applications, especially for metal oxide electrode materials. Herein, we designed a unique corn-like architecture composed of Se-doped carbon load Fe 3 O 4 particles (C/Se-L-Fe 3 O 4 ) through a strategy of simple displacement reaction. In this corn-like structure, the selenium-doped rod-shaped carbon provides a fast electron transport network, and the Fe 3 O 4 nanoparticles anchored on the surface of Se-doped carbon rod, which can have direct contact with the electrolyte, thus greatly shortening the ion transmission path. Benefiting from these advantages, C/Se-L-Fe 3 O 4 electrodes exhibit good stability and an ultrahigh specific capacity of 942.2 mAh g −1 after 600 cycles at 1 A g −1 . Especially, under a high current density of 5 A g −1 , a specific capacity of ca. 443 mAh g −1 is still retained, which is much higher than that of reported carbon-coated metal oxide electrode materials, confirming its excellent rate capability. The optimized structure and facile fabrication method provide a promising way for the utilization of transition metal oxides as high-performance and long life energy storage materials.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-021-04049-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Carbon ; Chemistry ; Chemistry and Materials Science ; Coated electrodes ; Condensed Matter Physics ; Current density ; Electrochemistry ; Electrode materials ; Electrodes ; Electron transport ; Energy Storage ; High current ; Iron oxides ; Lithium ; Lithium-ion batteries ; Metal oxides ; Nanoparticles ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Selenium ; Transition metal oxides</subject><ispartof>Ionics, 2021, Vol.27 (7), p.2825-2833</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-17257a8f7ed45c02166f465d7084162d341793161666078e4bc5c65b945afcc13</citedby><cites>FETCH-LOGICAL-c319t-17257a8f7ed45c02166f465d7084162d341793161666078e4bc5c65b945afcc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-021-04049-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-021-04049-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hou, Li</creatorcontrib><creatorcontrib>Deng, Shuolei</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Cui, Ruiwen</creatorcontrib><creatorcontrib>Zhou, Yanyan</creatorcontrib><creatorcontrib>Guo, Yuanyuan</creatorcontrib><creatorcontrib>Gao, Faming</creatorcontrib><title>A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Achieving high capacitance at high current density is one of the challenges for battery electrode materials to practical applications, especially for metal oxide electrode materials. Herein, we designed a unique corn-like architecture composed of Se-doped carbon load Fe 3 O 4 particles (C/Se-L-Fe 3 O 4 ) through a strategy of simple displacement reaction. In this corn-like structure, the selenium-doped rod-shaped carbon provides a fast electron transport network, and the Fe 3 O 4 nanoparticles anchored on the surface of Se-doped carbon rod, which can have direct contact with the electrolyte, thus greatly shortening the ion transmission path. Benefiting from these advantages, C/Se-L-Fe 3 O 4 electrodes exhibit good stability and an ultrahigh specific capacity of 942.2 mAh g −1 after 600 cycles at 1 A g −1 . Especially, under a high current density of 5 A g −1 , a specific capacity of ca. 443 mAh g −1 is still retained, which is much higher than that of reported carbon-coated metal oxide electrode materials, confirming its excellent rate capability. The optimized structure and facile fabrication method provide a promising way for the utilization of transition metal oxides as high-performance and long life energy storage materials.</description><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coated electrodes</subject><subject>Condensed Matter Physics</subject><subject>Current density</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Energy Storage</subject><subject>High current</subject><subject>Iron oxides</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metal oxides</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Selenium</subject><subject>Transition metal oxides</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9ULFOwzAQtRBIlMIPMFliNtiOYydjVVFAqtQBmC3HcRqXJA62M3Ti13EJEhvD6U5P793dewDcEnxPMBYPgZC8IAjTVAyzEtEzsCAFpwgLjs_BApdMIIGZuARXIRww5pxQsQBfKzgN9nMyUDs_oM5-GKi8bm00Ok7-BPejC6aGroGvBtVuTLNWvnID7Jyq4cZkOwZH5aPVnQlQBdjafYtG4xvnezVoAzsbWzv1yCZRpWI0_gjV4GoTrsFFo7pgbn77ErxvHt_Wz2i7e3pZr7ZIZ6SMiAiaC1U0wtQs18km5w3jeS1wwQindcaIKDPCE86xKAyrdK55XpUsV43WJFuCu3nv6F1yG6I8uMkP6aSkOSMZE5iXiUVnlvYuBG8aOXrbK3-UBMtT0HIOWqYP5E_QkiZRNotCIg974_9W_6P6BrjmgH4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hou, Li</creator><creator>Deng, Shuolei</creator><creator>Jiang, Yang</creator><creator>Cui, Ruiwen</creator><creator>Zhou, Yanyan</creator><creator>Guo, Yuanyuan</creator><creator>Gao, Faming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes</title><author>Hou, Li ; Deng, Shuolei ; Jiang, Yang ; Cui, Ruiwen ; Zhou, Yanyan ; Guo, Yuanyuan ; Gao, Faming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-17257a8f7ed45c02166f465d7084162d341793161666078e4bc5c65b945afcc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coated electrodes</topic><topic>Condensed Matter Physics</topic><topic>Current density</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Energy Storage</topic><topic>High current</topic><topic>Iron oxides</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metal oxides</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Selenium</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Li</creatorcontrib><creatorcontrib>Deng, Shuolei</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Cui, Ruiwen</creatorcontrib><creatorcontrib>Zhou, Yanyan</creatorcontrib><creatorcontrib>Guo, Yuanyuan</creatorcontrib><creatorcontrib>Gao, Faming</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Li</au><au>Deng, Shuolei</au><au>Jiang, Yang</au><au>Cui, Ruiwen</au><au>Zhou, Yanyan</au><au>Guo, Yuanyuan</au><au>Gao, Faming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021</date><risdate>2021</risdate><volume>27</volume><issue>7</issue><spage>2825</spage><epage>2833</epage><pages>2825-2833</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Achieving high capacitance at high current density is one of the challenges for battery electrode materials to practical applications, especially for metal oxide electrode materials. Herein, we designed a unique corn-like architecture composed of Se-doped carbon load Fe 3 O 4 particles (C/Se-L-Fe 3 O 4 ) through a strategy of simple displacement reaction. In this corn-like structure, the selenium-doped rod-shaped carbon provides a fast electron transport network, and the Fe 3 O 4 nanoparticles anchored on the surface of Se-doped carbon rod, which can have direct contact with the electrolyte, thus greatly shortening the ion transmission path. Benefiting from these advantages, C/Se-L-Fe 3 O 4 electrodes exhibit good stability and an ultrahigh specific capacity of 942.2 mAh g −1 after 600 cycles at 1 A g −1 . Especially, under a high current density of 5 A g −1 , a specific capacity of ca. 443 mAh g −1 is still retained, which is much higher than that of reported carbon-coated metal oxide electrode materials, confirming its excellent rate capability. The optimized structure and facile fabrication method provide a promising way for the utilization of transition metal oxides as high-performance and long life energy storage materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-021-04049-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2021, Vol.27 (7), p.2825-2833
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2541347069
source SpringerLink Journals
subjects Carbon
Chemistry
Chemistry and Materials Science
Coated electrodes
Condensed Matter Physics
Current density
Electrochemistry
Electrode materials
Electrodes
Electron transport
Energy Storage
High current
Iron oxides
Lithium
Lithium-ion batteries
Metal oxides
Nanoparticles
Optical and Electronic Materials
Original Paper
Rechargeable batteries
Renewable and Green Energy
Selenium
Transition metal oxides
title A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unique%20corn-like%20architecture%20composed%20of%20Se-doped%20carbon%20load%20Fe3O4%20particles%20as%20high-performance%20lithium-ion%20battery%20anodes&rft.jtitle=Ionics&rft.au=Hou,%20Li&rft.date=2021&rft.volume=27&rft.issue=7&rft.spage=2825&rft.epage=2833&rft.pages=2825-2833&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-021-04049-2&rft_dat=%3Cproquest_cross%3E2541347069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541347069&rft_id=info:pmid/&rfr_iscdi=true