A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes
Achieving high capacitance at high current density is one of the challenges for battery electrode materials to practical applications, especially for metal oxide electrode materials. Herein, we designed a unique corn-like architecture composed of Se-doped carbon load Fe 3 O 4 particles (C/Se-L-Fe 3...
Gespeichert in:
Veröffentlicht in: | Ionics 2021, Vol.27 (7), p.2825-2833 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2833 |
---|---|
container_issue | 7 |
container_start_page | 2825 |
container_title | Ionics |
container_volume | 27 |
creator | Hou, Li Deng, Shuolei Jiang, Yang Cui, Ruiwen Zhou, Yanyan Guo, Yuanyuan Gao, Faming |
description | Achieving high capacitance at high current density is one of the challenges for battery electrode materials to practical applications, especially for metal oxide electrode materials. Herein, we designed a unique corn-like architecture composed of Se-doped carbon load Fe
3
O
4
particles (C/Se-L-Fe
3
O
4
) through a strategy of simple displacement reaction. In this corn-like structure, the selenium-doped rod-shaped carbon provides a fast electron transport network, and the Fe
3
O
4
nanoparticles anchored on the surface of Se-doped carbon rod, which can have direct contact with the electrolyte, thus greatly shortening the ion transmission path. Benefiting from these advantages, C/Se-L-Fe
3
O
4
electrodes exhibit good stability and an ultrahigh specific capacity of 942.2 mAh g
−1
after 600 cycles at 1 A g
−1
. Especially, under a high current density of 5 A g
−1
, a specific capacity of ca. 443 mAh g
−1
is still retained, which is much higher than that of reported carbon-coated metal oxide electrode materials, confirming its excellent rate capability. The optimized structure and facile fabrication method provide a promising way for the utilization of transition metal oxides as high-performance and long life energy storage materials. |
doi_str_mv | 10.1007/s11581-021-04049-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2541347069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541347069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-17257a8f7ed45c02166f465d7084162d341793161666078e4bc5c65b945afcc13</originalsourceid><addsrcrecordid>eNp9ULFOwzAQtRBIlMIPMFliNtiOYydjVVFAqtQBmC3HcRqXJA62M3Ti13EJEhvD6U5P793dewDcEnxPMBYPgZC8IAjTVAyzEtEzsCAFpwgLjs_BApdMIIGZuARXIRww5pxQsQBfKzgN9nMyUDs_oM5-GKi8bm00Ok7-BPejC6aGroGvBtVuTLNWvnID7Jyq4cZkOwZH5aPVnQlQBdjafYtG4xvnezVoAzsbWzv1yCZRpWI0_gjV4GoTrsFFo7pgbn77ErxvHt_Wz2i7e3pZr7ZIZ6SMiAiaC1U0wtQs18km5w3jeS1wwQindcaIKDPCE86xKAyrdK55XpUsV43WJFuCu3nv6F1yG6I8uMkP6aSkOSMZE5iXiUVnlvYuBG8aOXrbK3-UBMtT0HIOWqYP5E_QkiZRNotCIg974_9W_6P6BrjmgH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541347069</pqid></control><display><type>article</type><title>A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes</title><source>SpringerLink Journals</source><creator>Hou, Li ; Deng, Shuolei ; Jiang, Yang ; Cui, Ruiwen ; Zhou, Yanyan ; Guo, Yuanyuan ; Gao, Faming</creator><creatorcontrib>Hou, Li ; Deng, Shuolei ; Jiang, Yang ; Cui, Ruiwen ; Zhou, Yanyan ; Guo, Yuanyuan ; Gao, Faming</creatorcontrib><description>Achieving high capacitance at high current density is one of the challenges for battery electrode materials to practical applications, especially for metal oxide electrode materials. Herein, we designed a unique corn-like architecture composed of Se-doped carbon load Fe
3
O
4
particles (C/Se-L-Fe
3
O
4
) through a strategy of simple displacement reaction. In this corn-like structure, the selenium-doped rod-shaped carbon provides a fast electron transport network, and the Fe
3
O
4
nanoparticles anchored on the surface of Se-doped carbon rod, which can have direct contact with the electrolyte, thus greatly shortening the ion transmission path. Benefiting from these advantages, C/Se-L-Fe
3
O
4
electrodes exhibit good stability and an ultrahigh specific capacity of 942.2 mAh g
−1
after 600 cycles at 1 A g
−1
. Especially, under a high current density of 5 A g
−1
, a specific capacity of ca. 443 mAh g
−1
is still retained, which is much higher than that of reported carbon-coated metal oxide electrode materials, confirming its excellent rate capability. The optimized structure and facile fabrication method provide a promising way for the utilization of transition metal oxides as high-performance and long life energy storage materials.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-021-04049-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Carbon ; Chemistry ; Chemistry and Materials Science ; Coated electrodes ; Condensed Matter Physics ; Current density ; Electrochemistry ; Electrode materials ; Electrodes ; Electron transport ; Energy Storage ; High current ; Iron oxides ; Lithium ; Lithium-ion batteries ; Metal oxides ; Nanoparticles ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Selenium ; Transition metal oxides</subject><ispartof>Ionics, 2021, Vol.27 (7), p.2825-2833</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-17257a8f7ed45c02166f465d7084162d341793161666078e4bc5c65b945afcc13</citedby><cites>FETCH-LOGICAL-c319t-17257a8f7ed45c02166f465d7084162d341793161666078e4bc5c65b945afcc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-021-04049-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-021-04049-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hou, Li</creatorcontrib><creatorcontrib>Deng, Shuolei</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Cui, Ruiwen</creatorcontrib><creatorcontrib>Zhou, Yanyan</creatorcontrib><creatorcontrib>Guo, Yuanyuan</creatorcontrib><creatorcontrib>Gao, Faming</creatorcontrib><title>A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Achieving high capacitance at high current density is one of the challenges for battery electrode materials to practical applications, especially for metal oxide electrode materials. Herein, we designed a unique corn-like architecture composed of Se-doped carbon load Fe
3
O
4
particles (C/Se-L-Fe
3
O
4
) through a strategy of simple displacement reaction. In this corn-like structure, the selenium-doped rod-shaped carbon provides a fast electron transport network, and the Fe
3
O
4
nanoparticles anchored on the surface of Se-doped carbon rod, which can have direct contact with the electrolyte, thus greatly shortening the ion transmission path. Benefiting from these advantages, C/Se-L-Fe
3
O
4
electrodes exhibit good stability and an ultrahigh specific capacity of 942.2 mAh g
−1
after 600 cycles at 1 A g
−1
. Especially, under a high current density of 5 A g
−1
, a specific capacity of ca. 443 mAh g
−1
is still retained, which is much higher than that of reported carbon-coated metal oxide electrode materials, confirming its excellent rate capability. The optimized structure and facile fabrication method provide a promising way for the utilization of transition metal oxides as high-performance and long life energy storage materials.</description><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coated electrodes</subject><subject>Condensed Matter Physics</subject><subject>Current density</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Energy Storage</subject><subject>High current</subject><subject>Iron oxides</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metal oxides</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Selenium</subject><subject>Transition metal oxides</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9ULFOwzAQtRBIlMIPMFliNtiOYydjVVFAqtQBmC3HcRqXJA62M3Ti13EJEhvD6U5P793dewDcEnxPMBYPgZC8IAjTVAyzEtEzsCAFpwgLjs_BApdMIIGZuARXIRww5pxQsQBfKzgN9nMyUDs_oM5-GKi8bm00Ok7-BPejC6aGroGvBtVuTLNWvnID7Jyq4cZkOwZH5aPVnQlQBdjafYtG4xvnezVoAzsbWzv1yCZRpWI0_gjV4GoTrsFFo7pgbn77ErxvHt_Wz2i7e3pZr7ZIZ6SMiAiaC1U0wtQs18km5w3jeS1wwQindcaIKDPCE86xKAyrdK55XpUsV43WJFuCu3nv6F1yG6I8uMkP6aSkOSMZE5iXiUVnlvYuBG8aOXrbK3-UBMtT0HIOWqYP5E_QkiZRNotCIg974_9W_6P6BrjmgH4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hou, Li</creator><creator>Deng, Shuolei</creator><creator>Jiang, Yang</creator><creator>Cui, Ruiwen</creator><creator>Zhou, Yanyan</creator><creator>Guo, Yuanyuan</creator><creator>Gao, Faming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes</title><author>Hou, Li ; Deng, Shuolei ; Jiang, Yang ; Cui, Ruiwen ; Zhou, Yanyan ; Guo, Yuanyuan ; Gao, Faming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-17257a8f7ed45c02166f465d7084162d341793161666078e4bc5c65b945afcc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coated electrodes</topic><topic>Condensed Matter Physics</topic><topic>Current density</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Energy Storage</topic><topic>High current</topic><topic>Iron oxides</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metal oxides</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Selenium</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Li</creatorcontrib><creatorcontrib>Deng, Shuolei</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Cui, Ruiwen</creatorcontrib><creatorcontrib>Zhou, Yanyan</creatorcontrib><creatorcontrib>Guo, Yuanyuan</creatorcontrib><creatorcontrib>Gao, Faming</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Li</au><au>Deng, Shuolei</au><au>Jiang, Yang</au><au>Cui, Ruiwen</au><au>Zhou, Yanyan</au><au>Guo, Yuanyuan</au><au>Gao, Faming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021</date><risdate>2021</risdate><volume>27</volume><issue>7</issue><spage>2825</spage><epage>2833</epage><pages>2825-2833</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Achieving high capacitance at high current density is one of the challenges for battery electrode materials to practical applications, especially for metal oxide electrode materials. Herein, we designed a unique corn-like architecture composed of Se-doped carbon load Fe
3
O
4
particles (C/Se-L-Fe
3
O
4
) through a strategy of simple displacement reaction. In this corn-like structure, the selenium-doped rod-shaped carbon provides a fast electron transport network, and the Fe
3
O
4
nanoparticles anchored on the surface of Se-doped carbon rod, which can have direct contact with the electrolyte, thus greatly shortening the ion transmission path. Benefiting from these advantages, C/Se-L-Fe
3
O
4
electrodes exhibit good stability and an ultrahigh specific capacity of 942.2 mAh g
−1
after 600 cycles at 1 A g
−1
. Especially, under a high current density of 5 A g
−1
, a specific capacity of ca. 443 mAh g
−1
is still retained, which is much higher than that of reported carbon-coated metal oxide electrode materials, confirming its excellent rate capability. The optimized structure and facile fabrication method provide a promising way for the utilization of transition metal oxides as high-performance and long life energy storage materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-021-04049-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2021, Vol.27 (7), p.2825-2833 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2541347069 |
source | SpringerLink Journals |
subjects | Carbon Chemistry Chemistry and Materials Science Coated electrodes Condensed Matter Physics Current density Electrochemistry Electrode materials Electrodes Electron transport Energy Storage High current Iron oxides Lithium Lithium-ion batteries Metal oxides Nanoparticles Optical and Electronic Materials Original Paper Rechargeable batteries Renewable and Green Energy Selenium Transition metal oxides |
title | A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unique%20corn-like%20architecture%20composed%20of%20Se-doped%20carbon%20load%20Fe3O4%20particles%20as%20high-performance%20lithium-ion%20battery%20anodes&rft.jtitle=Ionics&rft.au=Hou,%20Li&rft.date=2021&rft.volume=27&rft.issue=7&rft.spage=2825&rft.epage=2833&rft.pages=2825-2833&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-021-04049-2&rft_dat=%3Cproquest_cross%3E2541347069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541347069&rft_id=info:pmid/&rfr_iscdi=true |