Effects of pH Conditions and Application Rates of Commercial Humic Substances on Cu and Zn Mobility in Anthropogenic Mine Soils
We studied the effects of commercial humic substances derived from leonardite at different rates (0, 0.25, 2, 10 g kg−1) and pH (4.5, 6.0, 8.0) on Cu and Zn mobility, to evaluate their use for remediation of metal contaminated mine soils and to optimize their application conditions. We conducted a s...
Gespeichert in:
Veröffentlicht in: | Sustainability 2019-09, Vol.11 (18), p.4844 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied the effects of commercial humic substances derived from leonardite at different rates (0, 0.25, 2, 10 g kg−1) and pH (4.5, 6.0, 8.0) on Cu and Zn mobility, to evaluate their use for remediation of metal contaminated mine soils and to optimize their application conditions. We conducted a single-step extraction experiment and analyzed extracts for metal concentrations, soluble organic carbon and their E4/E6 ratio (ratio of absorption at 465 to 665 nm). Metal speciation in a soil solution was simulated by the non-ideal competitive adsorption-Donnan (NICA-Donnan) model. Increasing the amount of humic substances and the pH caused higher release rates of soluble organic carbon with a lower humic/fulvic acids ratio. This led to a higher mobility of metals (up to 110 times Cu concentration in control and 12 times for Zn) due to the formation of soluble metal-humic complexes. Speciation modeling predicted that increasing rates of humic substances would result in a higher proportion of Cu and Zn associated with fulvic acids, more mobile than the humic acids fraction. Application of commercial leonardite humic substances at 2–10 g kg−1 and with pH levels similar to or below natural soil could be useful for assisted-phytoextraction of contaminated anthropogenic soils. High rates of humic substances in more alkaline conditions could entail a considerable risk of metal leaching to groundwater, toxicity and transfer to the trophic chain. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su11184844 |