Elastic modulus distribution in poly(-isopopylacrylamide) and oligo(ethylene glycol methacrylate)-based microgels studied by AFM

The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM. Thermoresponsive poly( N -isopopylacrylamide) (PNIPAM) and poly(2-(2-methoxyethoxy)ethyl methacrylate- co -oligo(ethylene glycol)methacrylate) (P(MEO 2 MA- co -OEGMA)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-06, Vol.17 (23), p.5711-5717
Hauptverfasser: Wilms, Dimitri, Adler, Yanik, Schröer, Fabian, Bunnemann, Lennart, Schmidt, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5717
container_issue 23
container_start_page 5711
container_title Soft matter
container_volume 17
creator Wilms, Dimitri
Adler, Yanik
Schröer, Fabian
Bunnemann, Lennart
Schmidt, Stephan
description The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM. Thermoresponsive poly( N -isopopylacrylamide) (PNIPAM) and poly(2-(2-methoxyethoxy)ethyl methacrylate- co -oligo(ethylene glycol)methacrylate) (P(MEO 2 MA- co -OEGMA)) microgels are synthesized via precipitation polymerization above their lower critical solution temperature (LCST). High-resolution elastic modulus profiles are acquired using AFM force-indentation mapping of surface-deposited microgels at 25 °C. For both microgel systems, the use of a bifunctional crosslinker leads to a strong elastic modulus gradient with stiff microgel cores and soft networks toward the edge. In absence of a dedicated crosslinker (self-crosslinking), PNIPAM microgels show a homogeneous elastic modulus distribution, whereas self-crosslinked P(MEO 2 MA- co -OEGMA) microgels still show decreasing elastic moduli from the centre to the edge of the microgels. However, POEGMA microgels without comonomer showed no elastic modulus gradient suggesting that different incorporation rates of MEO 2 MA and OEGMA result in a radial variation of the polymer segment density. In addition, when varying the molecular weight of OEGMA the overall elastic modulus was affected, possibly due to molecular weight-dependent phase behavior and different reactivity. This shows that quite different microgel architectures can be obtained by the simple "one-pot" precipitation reaction of microgels which may open to new avenues toward advanced applications. The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM.
doi_str_mv 10.1039/d1sm00291k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2541250849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529946158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-621822e5714a83d4d7624780a9ade7649f50870fb28c58b2617ebb8f0e07a12a3</originalsourceid><addsrcrecordid>eNpd0U1P3DAQBmCrKiqUcuHeylIvC1JafyVxjojypYJ6aJG4RU482Zo6cepJDrnx0zFd2EpcbGv8aMbWS8ghZ184k9VXy7FnTFT8zxuyx0ulskIr_XZ7lne75D3iPWNSK168I7tSMS4lq_bIw5k3OLmW9sHOfkZqHU7RNfPkwkDdQMfgl1XmMIxhXLxpY1p6Z-GImsHS4N06rGD6vXgYgK790gZP-1TYyAmOssYgWNq7NoY1eKQ4zdalSrPQk_ObD2SnMx7h4HnfJ7fnZ79OL7PrHxdXpyfXWas4m7JCcC0E5CVXRkurbFkIVWpmKmOhLFTV5UyXrGuEbnPdiIKX0DS6Y8BKw4WR-2S16TvG8HcGnOreYQvemwHCjLXIRVWpguc60c-v6H2Y45Bel5TiIk1SVVLHG5X-hRihq8foehOXmrP6KZf6G_958y-X7wl_em45Nz3YLX0JIoGPGxCx3d7-D1Y-ApTnkwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541250849</pqid></control><display><type>article</type><title>Elastic modulus distribution in poly(-isopopylacrylamide) and oligo(ethylene glycol methacrylate)-based microgels studied by AFM</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wilms, Dimitri ; Adler, Yanik ; Schröer, Fabian ; Bunnemann, Lennart ; Schmidt, Stephan</creator><creatorcontrib>Wilms, Dimitri ; Adler, Yanik ; Schröer, Fabian ; Bunnemann, Lennart ; Schmidt, Stephan</creatorcontrib><description>The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM. Thermoresponsive poly( N -isopopylacrylamide) (PNIPAM) and poly(2-(2-methoxyethoxy)ethyl methacrylate- co -oligo(ethylene glycol)methacrylate) (P(MEO 2 MA- co -OEGMA)) microgels are synthesized via precipitation polymerization above their lower critical solution temperature (LCST). High-resolution elastic modulus profiles are acquired using AFM force-indentation mapping of surface-deposited microgels at 25 °C. For both microgel systems, the use of a bifunctional crosslinker leads to a strong elastic modulus gradient with stiff microgel cores and soft networks toward the edge. In absence of a dedicated crosslinker (self-crosslinking), PNIPAM microgels show a homogeneous elastic modulus distribution, whereas self-crosslinked P(MEO 2 MA- co -OEGMA) microgels still show decreasing elastic moduli from the centre to the edge of the microgels. However, POEGMA microgels without comonomer showed no elastic modulus gradient suggesting that different incorporation rates of MEO 2 MA and OEGMA result in a radial variation of the polymer segment density. In addition, when varying the molecular weight of OEGMA the overall elastic modulus was affected, possibly due to molecular weight-dependent phase behavior and different reactivity. This shows that quite different microgel architectures can be obtained by the simple "one-pot" precipitation reaction of microgels which may open to new avenues toward advanced applications. The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm00291k</identifier><identifier>PMID: 34013309</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Addition polymerization ; Chemical precipitation ; Crosslinking ; Ethylene ; Ethylene glycol ; Indentation ; Mechanical properties ; Microgels ; Modulus of elasticity ; Molecular weight ; Polyethylene glycol ; Polymers</subject><ispartof>Soft matter, 2021-06, Vol.17 (23), p.5711-5717</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-621822e5714a83d4d7624780a9ade7649f50870fb28c58b2617ebb8f0e07a12a3</citedby><cites>FETCH-LOGICAL-c410t-621822e5714a83d4d7624780a9ade7649f50870fb28c58b2617ebb8f0e07a12a3</cites><orcidid>0000-0002-3836-9036 ; 0000-0001-6767-6265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34013309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilms, Dimitri</creatorcontrib><creatorcontrib>Adler, Yanik</creatorcontrib><creatorcontrib>Schröer, Fabian</creatorcontrib><creatorcontrib>Bunnemann, Lennart</creatorcontrib><creatorcontrib>Schmidt, Stephan</creatorcontrib><title>Elastic modulus distribution in poly(-isopopylacrylamide) and oligo(ethylene glycol methacrylate)-based microgels studied by AFM</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM. Thermoresponsive poly( N -isopopylacrylamide) (PNIPAM) and poly(2-(2-methoxyethoxy)ethyl methacrylate- co -oligo(ethylene glycol)methacrylate) (P(MEO 2 MA- co -OEGMA)) microgels are synthesized via precipitation polymerization above their lower critical solution temperature (LCST). High-resolution elastic modulus profiles are acquired using AFM force-indentation mapping of surface-deposited microgels at 25 °C. For both microgel systems, the use of a bifunctional crosslinker leads to a strong elastic modulus gradient with stiff microgel cores and soft networks toward the edge. In absence of a dedicated crosslinker (self-crosslinking), PNIPAM microgels show a homogeneous elastic modulus distribution, whereas self-crosslinked P(MEO 2 MA- co -OEGMA) microgels still show decreasing elastic moduli from the centre to the edge of the microgels. However, POEGMA microgels without comonomer showed no elastic modulus gradient suggesting that different incorporation rates of MEO 2 MA and OEGMA result in a radial variation of the polymer segment density. In addition, when varying the molecular weight of OEGMA the overall elastic modulus was affected, possibly due to molecular weight-dependent phase behavior and different reactivity. This shows that quite different microgel architectures can be obtained by the simple "one-pot" precipitation reaction of microgels which may open to new avenues toward advanced applications. The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM.</description><subject>Addition polymerization</subject><subject>Chemical precipitation</subject><subject>Crosslinking</subject><subject>Ethylene</subject><subject>Ethylene glycol</subject><subject>Indentation</subject><subject>Mechanical properties</subject><subject>Microgels</subject><subject>Modulus of elasticity</subject><subject>Molecular weight</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0U1P3DAQBmCrKiqUcuHeylIvC1JafyVxjojypYJ6aJG4RU482Zo6cepJDrnx0zFd2EpcbGv8aMbWS8ghZ184k9VXy7FnTFT8zxuyx0ulskIr_XZ7lne75D3iPWNSK168I7tSMS4lq_bIw5k3OLmW9sHOfkZqHU7RNfPkwkDdQMfgl1XmMIxhXLxpY1p6Z-GImsHS4N06rGD6vXgYgK790gZP-1TYyAmOssYgWNq7NoY1eKQ4zdalSrPQk_ObD2SnMx7h4HnfJ7fnZ79OL7PrHxdXpyfXWas4m7JCcC0E5CVXRkurbFkIVWpmKmOhLFTV5UyXrGuEbnPdiIKX0DS6Y8BKw4WR-2S16TvG8HcGnOreYQvemwHCjLXIRVWpguc60c-v6H2Y45Bel5TiIk1SVVLHG5X-hRihq8foehOXmrP6KZf6G_958y-X7wl_em45Nz3YLX0JIoGPGxCx3d7-D1Y-ApTnkwQ</recordid><startdate>20210616</startdate><enddate>20210616</enddate><creator>Wilms, Dimitri</creator><creator>Adler, Yanik</creator><creator>Schröer, Fabian</creator><creator>Bunnemann, Lennart</creator><creator>Schmidt, Stephan</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3836-9036</orcidid><orcidid>https://orcid.org/0000-0001-6767-6265</orcidid></search><sort><creationdate>20210616</creationdate><title>Elastic modulus distribution in poly(-isopopylacrylamide) and oligo(ethylene glycol methacrylate)-based microgels studied by AFM</title><author>Wilms, Dimitri ; Adler, Yanik ; Schröer, Fabian ; Bunnemann, Lennart ; Schmidt, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-621822e5714a83d4d7624780a9ade7649f50870fb28c58b2617ebb8f0e07a12a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Addition polymerization</topic><topic>Chemical precipitation</topic><topic>Crosslinking</topic><topic>Ethylene</topic><topic>Ethylene glycol</topic><topic>Indentation</topic><topic>Mechanical properties</topic><topic>Microgels</topic><topic>Modulus of elasticity</topic><topic>Molecular weight</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilms, Dimitri</creatorcontrib><creatorcontrib>Adler, Yanik</creatorcontrib><creatorcontrib>Schröer, Fabian</creatorcontrib><creatorcontrib>Bunnemann, Lennart</creatorcontrib><creatorcontrib>Schmidt, Stephan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilms, Dimitri</au><au>Adler, Yanik</au><au>Schröer, Fabian</au><au>Bunnemann, Lennart</au><au>Schmidt, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic modulus distribution in poly(-isopopylacrylamide) and oligo(ethylene glycol methacrylate)-based microgels studied by AFM</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2021-06-16</date><risdate>2021</risdate><volume>17</volume><issue>23</issue><spage>5711</spage><epage>5717</epage><pages>5711-5717</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM. Thermoresponsive poly( N -isopopylacrylamide) (PNIPAM) and poly(2-(2-methoxyethoxy)ethyl methacrylate- co -oligo(ethylene glycol)methacrylate) (P(MEO 2 MA- co -OEGMA)) microgels are synthesized via precipitation polymerization above their lower critical solution temperature (LCST). High-resolution elastic modulus profiles are acquired using AFM force-indentation mapping of surface-deposited microgels at 25 °C. For both microgel systems, the use of a bifunctional crosslinker leads to a strong elastic modulus gradient with stiff microgel cores and soft networks toward the edge. In absence of a dedicated crosslinker (self-crosslinking), PNIPAM microgels show a homogeneous elastic modulus distribution, whereas self-crosslinked P(MEO 2 MA- co -OEGMA) microgels still show decreasing elastic moduli from the centre to the edge of the microgels. However, POEGMA microgels without comonomer showed no elastic modulus gradient suggesting that different incorporation rates of MEO 2 MA and OEGMA result in a radial variation of the polymer segment density. In addition, when varying the molecular weight of OEGMA the overall elastic modulus was affected, possibly due to molecular weight-dependent phase behavior and different reactivity. This shows that quite different microgel architectures can be obtained by the simple "one-pot" precipitation reaction of microgels which may open to new avenues toward advanced applications. The spatial elastic modulus distribution of microgel networks in presence and absence of bifunctional crosslinkers is studied by AFM.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34013309</pmid><doi>10.1039/d1sm00291k</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3836-9036</orcidid><orcidid>https://orcid.org/0000-0001-6767-6265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-06, Vol.17 (23), p.5711-5717
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_journals_2541250849
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Addition polymerization
Chemical precipitation
Crosslinking
Ethylene
Ethylene glycol
Indentation
Mechanical properties
Microgels
Modulus of elasticity
Molecular weight
Polyethylene glycol
Polymers
title Elastic modulus distribution in poly(-isopopylacrylamide) and oligo(ethylene glycol methacrylate)-based microgels studied by AFM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic%20modulus%20distribution%20in%20poly(-isopopylacrylamide)%20and%20oligo(ethylene%20glycol%20methacrylate)-based%20microgels%20studied%20by%20AFM&rft.jtitle=Soft%20matter&rft.au=Wilms,%20Dimitri&rft.date=2021-06-16&rft.volume=17&rft.issue=23&rft.spage=5711&rft.epage=5717&rft.pages=5711-5717&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm00291k&rft_dat=%3Cproquest_pubme%3E2529946158%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541250849&rft_id=info:pmid/34013309&rfr_iscdi=true