Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball
Let H(Bn) be the set of all holomorphic functions on the open unit ball Bn in Cn, φ a holomorphic self‐map of Bn, u∈H(Bn), and Rm the mth iterated radial derivative operator on H(Bn). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operat...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-07, Vol.44 (11), p.8684-8696 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8696 |
---|---|
container_issue | 11 |
container_start_page | 8684 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Stević, Stevo Jiang, Zhi‐jie |
description | Let
H(Bn) be the set of all holomorphic functions on the open unit ball
Bn in
Cn, φ a holomorphic self‐map of
Bn,
u∈H(Bn), and Rm the mth iterated radial derivative operator on
H(Bn). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operator
Ru,φm from the weighted Bergman–Orlicz space to the weighted‐type space. |
doi_str_mv | 10.1002/mma.7298 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2541237841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541237841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-98a9a96ecb591ae910bd211ad626257b0d30d7547f7a51baf54dcbea95b495763</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKvgIwTcuJmaZJLJZFmLf9DSjeIyZGYybcpMMyYppW7sIwi-YZ_EGWvduboXvnO_CweAS4wGGCFyU9dqwIlIj0APIyEiTHlyDHoIcxRRgukpOPN-gRBKMSY98PGqzWwedAFN0E51i1OFURXMbd1Yb4KxS2ibLrPOw9LZGq4PN7fazWq13G2_pq4y-Tv0jcq1h8H-MbvtZ9g0-pC0ZWGu4WppAsxUVZ2Dk1JVXl_8zj54ub97Hj1G4-nD02g4jnIi4jQSqRJKJDrPmMBKC4yygmCsioQkhPEMFTEqOKO85IrhTJWMFnmmlWAZFYwncR9c7XsbZ99W2ge5sCu3bF9KwigmMU8pbqnrPZU7673TpWycqZXbSIxkp1e2emWnt0WjPbo2ld78y8nJZPjDfwPfyH_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541237841</pqid></control><display><type>article</type><title>Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stević, Stevo ; Jiang, Zhi‐jie</creator><creatorcontrib>Stević, Stevo ; Jiang, Zhi‐jie</creatorcontrib><description>Let
H(Bn) be the set of all holomorphic functions on the open unit ball
Bn in
Cn, φ a holomorphic self‐map of
Bn,
u∈H(Bn), and Rm the mth iterated radial derivative operator on
H(Bn). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operator
Ru,φm from the weighted Bergman–Orlicz space to the weighted‐type space.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7298</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Analytic functions ; Bergman–Orlicz space ; Composition ; holomorphic function ; Mathematical analysis ; metrical boundedness ; Operators (mathematics) ; Orlicz space ; weighted iterated radial composition operator ; weighted‐type space</subject><ispartof>Mathematical methods in the applied sciences, 2021-07, Vol.44 (11), p.8684-8696</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-98a9a96ecb591ae910bd211ad626257b0d30d7547f7a51baf54dcbea95b495763</citedby><cites>FETCH-LOGICAL-c2938-98a9a96ecb591ae910bd211ad626257b0d30d7547f7a51baf54dcbea95b495763</cites><orcidid>0000-0002-7202-9764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7298$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7298$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Stević, Stevo</creatorcontrib><creatorcontrib>Jiang, Zhi‐jie</creatorcontrib><title>Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball</title><title>Mathematical methods in the applied sciences</title><description>Let
H(Bn) be the set of all holomorphic functions on the open unit ball
Bn in
Cn, φ a holomorphic self‐map of
Bn,
u∈H(Bn), and Rm the mth iterated radial derivative operator on
H(Bn). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operator
Ru,φm from the weighted Bergman–Orlicz space to the weighted‐type space.</description><subject>Analytic functions</subject><subject>Bergman–Orlicz space</subject><subject>Composition</subject><subject>holomorphic function</subject><subject>Mathematical analysis</subject><subject>metrical boundedness</subject><subject>Operators (mathematics)</subject><subject>Orlicz space</subject><subject>weighted iterated radial composition operator</subject><subject>weighted‐type space</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKvgIwTcuJmaZJLJZFmLf9DSjeIyZGYybcpMMyYppW7sIwi-YZ_EGWvduboXvnO_CweAS4wGGCFyU9dqwIlIj0APIyEiTHlyDHoIcxRRgukpOPN-gRBKMSY98PGqzWwedAFN0E51i1OFURXMbd1Yb4KxS2ibLrPOw9LZGq4PN7fazWq13G2_pq4y-Tv0jcq1h8H-MbvtZ9g0-pC0ZWGu4WppAsxUVZ2Dk1JVXl_8zj54ub97Hj1G4-nD02g4jnIi4jQSqRJKJDrPmMBKC4yygmCsioQkhPEMFTEqOKO85IrhTJWMFnmmlWAZFYwncR9c7XsbZ99W2ge5sCu3bF9KwigmMU8pbqnrPZU7673TpWycqZXbSIxkp1e2emWnt0WjPbo2ld78y8nJZPjDfwPfyH_Y</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Stević, Stevo</creator><creator>Jiang, Zhi‐jie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7202-9764</orcidid></search><sort><creationdate>20210730</creationdate><title>Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball</title><author>Stević, Stevo ; Jiang, Zhi‐jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-98a9a96ecb591ae910bd211ad626257b0d30d7547f7a51baf54dcbea95b495763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytic functions</topic><topic>Bergman–Orlicz space</topic><topic>Composition</topic><topic>holomorphic function</topic><topic>Mathematical analysis</topic><topic>metrical boundedness</topic><topic>Operators (mathematics)</topic><topic>Orlicz space</topic><topic>weighted iterated radial composition operator</topic><topic>weighted‐type space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stević, Stevo</creatorcontrib><creatorcontrib>Jiang, Zhi‐jie</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stević, Stevo</au><au>Jiang, Zhi‐jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-07-30</date><risdate>2021</risdate><volume>44</volume><issue>11</issue><spage>8684</spage><epage>8696</epage><pages>8684-8696</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Let
H(Bn) be the set of all holomorphic functions on the open unit ball
Bn in
Cn, φ a holomorphic self‐map of
Bn,
u∈H(Bn), and Rm the mth iterated radial derivative operator on
H(Bn). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operator
Ru,φm from the weighted Bergman–Orlicz space to the weighted‐type space.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7298</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7202-9764</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-07, Vol.44 (11), p.8684-8696 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2541237841 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analytic functions Bergman–Orlicz space Composition holomorphic function Mathematical analysis metrical boundedness Operators (mathematics) Orlicz space weighted iterated radial composition operator weighted‐type space |
title | Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20iterated%20radial%20composition%20operators%20from%20weighted%20Bergman%E2%80%93Orlicz%20spaces%20to%20weighted%E2%80%90type%20spaces%20on%20the%20unit%20ball&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Stevi%C4%87,%20Stevo&rft.date=2021-07-30&rft.volume=44&rft.issue=11&rft.spage=8684&rft.epage=8696&rft.pages=8684-8696&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7298&rft_dat=%3Cproquest_cross%3E2541237841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541237841&rft_id=info:pmid/&rfr_iscdi=true |