Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball

Let H(Bn) be the set of all holomorphic functions on the open unit ball Bn in Cn, φ a holomorphic self‐map of Bn, u∈H(Bn), and Rm the mth iterated radial derivative operator on H(Bn). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-07, Vol.44 (11), p.8684-8696
Hauptverfasser: Stević, Stevo, Jiang, Zhi‐jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8696
container_issue 11
container_start_page 8684
container_title Mathematical methods in the applied sciences
container_volume 44
creator Stević, Stevo
Jiang, Zhi‐jie
description Let H(Bn) be the set of all holomorphic functions on the open unit ball Bn in Cn, φ a holomorphic self‐map of Bn, u∈H(Bn), and Rm the mth iterated radial derivative operator on H(Bn). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operator Ru,φm from the weighted Bergman–Orlicz space to the weighted‐type space.
doi_str_mv 10.1002/mma.7298
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2541237841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541237841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-98a9a96ecb591ae910bd211ad626257b0d30d7547f7a51baf54dcbea95b495763</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKvgIwTcuJmaZJLJZFmLf9DSjeIyZGYybcpMMyYppW7sIwi-YZ_EGWvduboXvnO_CweAS4wGGCFyU9dqwIlIj0APIyEiTHlyDHoIcxRRgukpOPN-gRBKMSY98PGqzWwedAFN0E51i1OFURXMbd1Yb4KxS2ibLrPOw9LZGq4PN7fazWq13G2_pq4y-Tv0jcq1h8H-MbvtZ9g0-pC0ZWGu4WppAsxUVZ2Dk1JVXl_8zj54ub97Hj1G4-nD02g4jnIi4jQSqRJKJDrPmMBKC4yygmCsioQkhPEMFTEqOKO85IrhTJWMFnmmlWAZFYwncR9c7XsbZ99W2ge5sCu3bF9KwigmMU8pbqnrPZU7673TpWycqZXbSIxkp1e2emWnt0WjPbo2ld78y8nJZPjDfwPfyH_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541237841</pqid></control><display><type>article</type><title>Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stević, Stevo ; Jiang, Zhi‐jie</creator><creatorcontrib>Stević, Stevo ; Jiang, Zhi‐jie</creatorcontrib><description>Let H(Bn) be the set of all holomorphic functions on the open unit ball Bn in Cn, φ a holomorphic self‐map of Bn, u∈H(Bn), and Rm the mth iterated radial derivative operator on H(Bn). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operator Ru,φm from the weighted Bergman–Orlicz space to the weighted‐type space.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7298</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Analytic functions ; Bergman–Orlicz space ; Composition ; holomorphic function ; Mathematical analysis ; metrical boundedness ; Operators (mathematics) ; Orlicz space ; weighted iterated radial composition operator ; weighted‐type space</subject><ispartof>Mathematical methods in the applied sciences, 2021-07, Vol.44 (11), p.8684-8696</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-98a9a96ecb591ae910bd211ad626257b0d30d7547f7a51baf54dcbea95b495763</citedby><cites>FETCH-LOGICAL-c2938-98a9a96ecb591ae910bd211ad626257b0d30d7547f7a51baf54dcbea95b495763</cites><orcidid>0000-0002-7202-9764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7298$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7298$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Stević, Stevo</creatorcontrib><creatorcontrib>Jiang, Zhi‐jie</creatorcontrib><title>Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball</title><title>Mathematical methods in the applied sciences</title><description>Let H(Bn) be the set of all holomorphic functions on the open unit ball Bn in Cn, φ a holomorphic self‐map of Bn, u∈H(Bn), and Rm the mth iterated radial derivative operator on H(Bn). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operator Ru,φm from the weighted Bergman–Orlicz space to the weighted‐type space.</description><subject>Analytic functions</subject><subject>Bergman–Orlicz space</subject><subject>Composition</subject><subject>holomorphic function</subject><subject>Mathematical analysis</subject><subject>metrical boundedness</subject><subject>Operators (mathematics)</subject><subject>Orlicz space</subject><subject>weighted iterated radial composition operator</subject><subject>weighted‐type space</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKvgIwTcuJmaZJLJZFmLf9DSjeIyZGYybcpMMyYppW7sIwi-YZ_EGWvduboXvnO_CweAS4wGGCFyU9dqwIlIj0APIyEiTHlyDHoIcxRRgukpOPN-gRBKMSY98PGqzWwedAFN0E51i1OFURXMbd1Yb4KxS2ibLrPOw9LZGq4PN7fazWq13G2_pq4y-Tv0jcq1h8H-MbvtZ9g0-pC0ZWGu4WppAsxUVZ2Dk1JVXl_8zj54ub97Hj1G4-nD02g4jnIi4jQSqRJKJDrPmMBKC4yygmCsioQkhPEMFTEqOKO85IrhTJWMFnmmlWAZFYwncR9c7XsbZ99W2ge5sCu3bF9KwigmMU8pbqnrPZU7673TpWycqZXbSIxkp1e2emWnt0WjPbo2ld78y8nJZPjDfwPfyH_Y</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Stević, Stevo</creator><creator>Jiang, Zhi‐jie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7202-9764</orcidid></search><sort><creationdate>20210730</creationdate><title>Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball</title><author>Stević, Stevo ; Jiang, Zhi‐jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-98a9a96ecb591ae910bd211ad626257b0d30d7547f7a51baf54dcbea95b495763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytic functions</topic><topic>Bergman–Orlicz space</topic><topic>Composition</topic><topic>holomorphic function</topic><topic>Mathematical analysis</topic><topic>metrical boundedness</topic><topic>Operators (mathematics)</topic><topic>Orlicz space</topic><topic>weighted iterated radial composition operator</topic><topic>weighted‐type space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stević, Stevo</creatorcontrib><creatorcontrib>Jiang, Zhi‐jie</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stević, Stevo</au><au>Jiang, Zhi‐jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-07-30</date><risdate>2021</risdate><volume>44</volume><issue>11</issue><spage>8684</spage><epage>8696</epage><pages>8684-8696</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Let H(Bn) be the set of all holomorphic functions on the open unit ball Bn in Cn, φ a holomorphic self‐map of Bn, u∈H(Bn), and Rm the mth iterated radial derivative operator on H(Bn). We characterize the metrical boundedness and metrical compactness of the weighted iterated radial composition operator Ru,φm from the weighted Bergman–Orlicz space to the weighted‐type space.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7298</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7202-9764</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-07, Vol.44 (11), p.8684-8696
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2541237841
source Wiley Online Library Journals Frontfile Complete
subjects Analytic functions
Bergman–Orlicz space
Composition
holomorphic function
Mathematical analysis
metrical boundedness
Operators (mathematics)
Orlicz space
weighted iterated radial composition operator
weighted‐type space
title Weighted iterated radial composition operators from weighted Bergman–Orlicz spaces to weighted‐type spaces on the unit ball
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20iterated%20radial%20composition%20operators%20from%20weighted%20Bergman%E2%80%93Orlicz%20spaces%20to%20weighted%E2%80%90type%20spaces%20on%20the%20unit%20ball&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Stevi%C4%87,%20Stevo&rft.date=2021-07-30&rft.volume=44&rft.issue=11&rft.spage=8684&rft.epage=8696&rft.pages=8684-8696&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7298&rft_dat=%3Cproquest_cross%3E2541237841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541237841&rft_id=info:pmid/&rfr_iscdi=true