Multiple solutions for critical nonhomogeneous elliptic systems in noncontractible domain

The paper is concerned with multiple solutions of a nonhomogeneous elliptic system with Sobolev critical exponent over a noncontractible domain, precisely, a smooth bounded annular domain. We prove the existence of four solutions using variational methods and Lusternik–Schnirelmann theory, when the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-07, Vol.44 (11), p.8615-8637
Hauptverfasser: Duan, Xueliang, Wei, Gongming, Yang, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8637
container_issue 11
container_start_page 8615
container_title Mathematical methods in the applied sciences
container_volume 44
creator Duan, Xueliang
Wei, Gongming
Yang, Haitao
description The paper is concerned with multiple solutions of a nonhomogeneous elliptic system with Sobolev critical exponent over a noncontractible domain, precisely, a smooth bounded annular domain. We prove the existence of four solutions using variational methods and Lusternik–Schnirelmann theory, when the inner hole of the annulus is sufficiently small.
doi_str_mv 10.1002/mma.7289
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2541237658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541237658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3279-9fe44c7ef67755ed4643d31f3b5a3724e0d2519d907c78ece15c18f470c3c8813</originalsourceid><addsrcrecordid>eNp10L1OwzAUBWALgUQpSDyCJRaWFF_biZOxqviTWrHAwGSlzg24cuxgJ0J9e1LKynSH--kc6RByDWwBjPG7rqsXipfVCZkBq6oMpCpOyYyBYpnkIM_JRUo7xlgJwGfkfTO6wfYOaQpuHGzwibYhUhPtYE3tqA_-M3ThAz2GMVF0zvbTh6Z9GrBL1PoDMcEPsTaD3U5JTehq6y_JWVu7hFd_d07eHu5fV0_Z-uXxebVcZ0ZwVWVVi1IahW2hVJ5jIwspGgGt2Oa1UFwia3gOVVMxZVSJBiE3ULZSMSNMWYKYk5tjbh_D14hp0LswRj9Vap5L4EIVeTmp26MyMaQUsdV9tF0d9xqYPgynp-H0YbiJZkf6bR3u_3V6s1n--h_TTHA1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541237658</pqid></control><display><type>article</type><title>Multiple solutions for critical nonhomogeneous elliptic systems in noncontractible domain</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Duan, Xueliang ; Wei, Gongming ; Yang, Haitao</creator><creatorcontrib>Duan, Xueliang ; Wei, Gongming ; Yang, Haitao</creatorcontrib><description>The paper is concerned with multiple solutions of a nonhomogeneous elliptic system with Sobolev critical exponent over a noncontractible domain, precisely, a smooth bounded annular domain. We prove the existence of four solutions using variational methods and Lusternik–Schnirelmann theory, when the inner hole of the annulus is sufficiently small.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7289</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Domains ; nonlinear elliptic equations ; Variational methods ; variational methods for elliptic systems</subject><ispartof>Mathematical methods in the applied sciences, 2021-07, Vol.44 (11), p.8615-8637</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3279-9fe44c7ef67755ed4643d31f3b5a3724e0d2519d907c78ece15c18f470c3c8813</citedby><cites>FETCH-LOGICAL-c3279-9fe44c7ef67755ed4643d31f3b5a3724e0d2519d907c78ece15c18f470c3c8813</cites><orcidid>0000-0001-7102-0250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7289$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7289$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Duan, Xueliang</creatorcontrib><creatorcontrib>Wei, Gongming</creatorcontrib><creatorcontrib>Yang, Haitao</creatorcontrib><title>Multiple solutions for critical nonhomogeneous elliptic systems in noncontractible domain</title><title>Mathematical methods in the applied sciences</title><description>The paper is concerned with multiple solutions of a nonhomogeneous elliptic system with Sobolev critical exponent over a noncontractible domain, precisely, a smooth bounded annular domain. We prove the existence of four solutions using variational methods and Lusternik–Schnirelmann theory, when the inner hole of the annulus is sufficiently small.</description><subject>Domains</subject><subject>nonlinear elliptic equations</subject><subject>Variational methods</subject><subject>variational methods for elliptic systems</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUBWALgUQpSDyCJRaWFF_biZOxqviTWrHAwGSlzg24cuxgJ0J9e1LKynSH--kc6RByDWwBjPG7rqsXipfVCZkBq6oMpCpOyYyBYpnkIM_JRUo7xlgJwGfkfTO6wfYOaQpuHGzwibYhUhPtYE3tqA_-M3ThAz2GMVF0zvbTh6Z9GrBL1PoDMcEPsTaD3U5JTehq6y_JWVu7hFd_d07eHu5fV0_Z-uXxebVcZ0ZwVWVVi1IahW2hVJ5jIwspGgGt2Oa1UFwia3gOVVMxZVSJBiE3ULZSMSNMWYKYk5tjbh_D14hp0LswRj9Vap5L4EIVeTmp26MyMaQUsdV9tF0d9xqYPgynp-H0YbiJZkf6bR3u_3V6s1n--h_TTHA1</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Duan, Xueliang</creator><creator>Wei, Gongming</creator><creator>Yang, Haitao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-7102-0250</orcidid></search><sort><creationdate>20210730</creationdate><title>Multiple solutions for critical nonhomogeneous elliptic systems in noncontractible domain</title><author>Duan, Xueliang ; Wei, Gongming ; Yang, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3279-9fe44c7ef67755ed4643d31f3b5a3724e0d2519d907c78ece15c18f470c3c8813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Domains</topic><topic>nonlinear elliptic equations</topic><topic>Variational methods</topic><topic>variational methods for elliptic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Xueliang</creatorcontrib><creatorcontrib>Wei, Gongming</creatorcontrib><creatorcontrib>Yang, Haitao</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Xueliang</au><au>Wei, Gongming</au><au>Yang, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple solutions for critical nonhomogeneous elliptic systems in noncontractible domain</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-07-30</date><risdate>2021</risdate><volume>44</volume><issue>11</issue><spage>8615</spage><epage>8637</epage><pages>8615-8637</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The paper is concerned with multiple solutions of a nonhomogeneous elliptic system with Sobolev critical exponent over a noncontractible domain, precisely, a smooth bounded annular domain. We prove the existence of four solutions using variational methods and Lusternik–Schnirelmann theory, when the inner hole of the annulus is sufficiently small.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7289</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7102-0250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-07, Vol.44 (11), p.8615-8637
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2541237658
source Wiley Online Library Journals Frontfile Complete
subjects Domains
nonlinear elliptic equations
Variational methods
variational methods for elliptic systems
title Multiple solutions for critical nonhomogeneous elliptic systems in noncontractible domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20solutions%20for%20critical%20nonhomogeneous%20elliptic%20systems%20in%20noncontractible%20domain&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Duan,%20Xueliang&rft.date=2021-07-30&rft.volume=44&rft.issue=11&rft.spage=8615&rft.epage=8637&rft.pages=8615-8637&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7289&rft_dat=%3Cproquest_cross%3E2541237658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541237658&rft_id=info:pmid/&rfr_iscdi=true