HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units

Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-06
Hauptverfasser: Wei-Ning, Hsu, Bolte, Benjamin, Yao-Hung, Hubert Tsai, Lakhotia, Kushal, Salakhutdinov, Ruslan, Abdelrahman, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wei-Ning, Hsu
Bolte, Benjamin
Yao-Hung, Hubert Tsai
Lakhotia, Kushal
Salakhutdinov, Ruslan
Abdelrahman, Mohamed
description Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2541128010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541128010</sourcerecordid><originalsourceid>FETCH-proquest_journals_25411280103</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadhTm1pGNheCgItVMHWfpZM9nWPg3690n0Azq9h-edEIcHge_FIecz4iK2jDG-WvMoChxySYdtkhUbmkPXePlgwL4kQk1zA1DdaQbGAoLqRS-1ogcQVkl1o9c3PQp8jOPJQi2rr-qGprKuQdGzkj0uyLQRHYL765ws90mxSz1j9XMA7MtWD1aNVPIo9H0eM58F_10f_ERCJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541128010</pqid></control><display><type>article</type><title>HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units</title><source>Free E- Journals</source><creator>Wei-Ning, Hsu ; Bolte, Benjamin ; Yao-Hung, Hubert Tsai ; Lakhotia, Kushal ; Salakhutdinov, Ruslan ; Abdelrahman, Mohamed</creator><creatorcontrib>Wei-Ning, Hsu ; Bolte, Benjamin ; Yao-Hung, Hubert Tsai ; Lakhotia, Kushal ; Salakhutdinov, Ruslan ; Abdelrahman, Mohamed</creatorcontrib><description>Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Labels ; Learning ; Representations ; Segmentation ; Sound ; Speech</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wei-Ning, Hsu</creatorcontrib><creatorcontrib>Bolte, Benjamin</creatorcontrib><creatorcontrib>Yao-Hung, Hubert Tsai</creatorcontrib><creatorcontrib>Lakhotia, Kushal</creatorcontrib><creatorcontrib>Salakhutdinov, Ruslan</creatorcontrib><creatorcontrib>Abdelrahman, Mohamed</creatorcontrib><title>HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units</title><title>arXiv.org</title><description>Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.</description><subject>Clustering</subject><subject>Labels</subject><subject>Learning</subject><subject>Representations</subject><subject>Segmentation</subject><subject>Sound</subject><subject>Speech</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadhTm1pGNheCgItVMHWfpZM9nWPg3690n0Azq9h-edEIcHge_FIecz4iK2jDG-WvMoChxySYdtkhUbmkPXePlgwL4kQk1zA1DdaQbGAoLqRS-1ogcQVkl1o9c3PQp8jOPJQi2rr-qGprKuQdGzkj0uyLQRHYL765ws90mxSz1j9XMA7MtWD1aNVPIo9H0eM58F_10f_ERCJQ</recordid><startdate>20210614</startdate><enddate>20210614</enddate><creator>Wei-Ning, Hsu</creator><creator>Bolte, Benjamin</creator><creator>Yao-Hung, Hubert Tsai</creator><creator>Lakhotia, Kushal</creator><creator>Salakhutdinov, Ruslan</creator><creator>Abdelrahman, Mohamed</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210614</creationdate><title>HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units</title><author>Wei-Ning, Hsu ; Bolte, Benjamin ; Yao-Hung, Hubert Tsai ; Lakhotia, Kushal ; Salakhutdinov, Ruslan ; Abdelrahman, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25411280103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>Labels</topic><topic>Learning</topic><topic>Representations</topic><topic>Segmentation</topic><topic>Sound</topic><topic>Speech</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei-Ning, Hsu</creatorcontrib><creatorcontrib>Bolte, Benjamin</creatorcontrib><creatorcontrib>Yao-Hung, Hubert Tsai</creatorcontrib><creatorcontrib>Lakhotia, Kushal</creatorcontrib><creatorcontrib>Salakhutdinov, Ruslan</creatorcontrib><creatorcontrib>Abdelrahman, Mohamed</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei-Ning, Hsu</au><au>Bolte, Benjamin</au><au>Yao-Hung, Hubert Tsai</au><au>Lakhotia, Kushal</au><au>Salakhutdinov, Ruslan</au><au>Abdelrahman, Mohamed</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units</atitle><jtitle>arXiv.org</jtitle><date>2021-06-14</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2541128010
source Free E- Journals
subjects Clustering
Labels
Learning
Representations
Segmentation
Sound
Speech
title HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=HuBERT:%20Self-Supervised%20Speech%20Representation%20Learning%20by%20Masked%20Prediction%20of%20Hidden%20Units&rft.jtitle=arXiv.org&rft.au=Wei-Ning,%20Hsu&rft.date=2021-06-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2541128010%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541128010&rft_id=info:pmid/&rfr_iscdi=true