Extent prediction of the information and influence propagation in online social networks

We present a new mathematical model that predicts the number of users informed and influenced by messages that are propagated in an online social network. Our model is based on a new way of quantifying the tie-strength, which in turn considers the affinity and relevance between nodes. We could verif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical organization theory 2021-06, Vol.27 (2), p.195-230
Hauptverfasser: Ortiz-Gaona, Raúl M., Postigo-Boix, Marcos, Melús-Moreno, José L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 2
container_start_page 195
container_title Computational and mathematical organization theory
container_volume 27
creator Ortiz-Gaona, Raúl M.
Postigo-Boix, Marcos
Melús-Moreno, José L.
description We present a new mathematical model that predicts the number of users informed and influenced by messages that are propagated in an online social network. Our model is based on a new way of quantifying the tie-strength, which in turn considers the affinity and relevance between nodes. We could verify that the messages to inform and influence, as well as their importance, produce different propagation behaviors in an online social network. We carried out laboratory tests with our model and with the baseline models Linear Threshold and Independent Cascade , which are currently used in many scientific works. The results were evaluated by comparing them with empirical data. The tests show conclusively that the predictions of our model are notably more accurate and precise than the predictions of the baseline models. Our model can contribute to the development of models that maximize the propagation of messages; to predict the spread of viruses in computer networks, mobile telephony and online social networks.
doi_str_mv 10.1007/s10588-020-09309-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2541123677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541123677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-2de404cf4da6d13629571ebcedd7e9cb9bb21d0979cbe24d41e1fe6b0c9e65d73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59VJsptsjlLqBxS8KPQWdpPZunWb1GSL-u9Nu0JvwsBMMs87M7yEXFO4pQDyLlIoqyoHBjkoDioXJ2RCS8lyxQtxmmpe0ZypanlOLmJcA4CSHCZkOf8e0A3ZNqDtzNB5l_k2G94x61zrw6Y-fNXO7t_9Dp3BxPptvRo7XeJd3znMojdd3WcOhy8fPuIlOWvrPuLVX56St4f56-wpX7w8Ps_uF7nhkg45s1hAYdrC1sJSLpgqJcXGoLUSlWlU0zBq07GpRlbYgiJtUTRgFIrSSj4lN-PcdNXnDuOg134XXFqpWVlQyriQe4qNlAk-xoCt3oZuU4cfTUHvHdSjgzo5qA8OapFE2ShC410XjxIpoEwBLCF8RGJquhWG4_Z_Bv8CCpWANQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541123677</pqid></control><display><type>article</type><title>Extent prediction of the information and influence propagation in online social networks</title><source>SpringerLink Journals</source><creator>Ortiz-Gaona, Raúl M. ; Postigo-Boix, Marcos ; Melús-Moreno, José L.</creator><creatorcontrib>Ortiz-Gaona, Raúl M. ; Postigo-Boix, Marcos ; Melús-Moreno, José L.</creatorcontrib><description>We present a new mathematical model that predicts the number of users informed and influenced by messages that are propagated in an online social network. Our model is based on a new way of quantifying the tie-strength, which in turn considers the affinity and relevance between nodes. We could verify that the messages to inform and influence, as well as their importance, produce different propagation behaviors in an online social network. We carried out laboratory tests with our model and with the baseline models Linear Threshold and Independent Cascade , which are currently used in many scientific works. The results were evaluated by comparing them with empirical data. The tests show conclusively that the predictions of our model are notably more accurate and precise than the predictions of the baseline models. Our model can contribute to the development of models that maximize the propagation of messages; to predict the spread of viruses in computer networks, mobile telephony and online social networks.</description><identifier>ISSN: 1381-298X</identifier><identifier>EISSN: 1572-9346</identifier><identifier>DOI: 10.1007/s10588-020-09309-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Affinity ; Artificial Intelligence ; Business and Management ; Cellular telephony ; Computer networks ; Computer viruses ; Laboratory tests ; Management ; Mathematical models ; Messages ; Methodology of the Social Sciences ; Mobile computing ; Operations Research/Decision Theory ; Organization theory ; Propagation ; S.I.: Social Cyber-Security ; Social networks ; Sociology ; Telephony ; Viruses</subject><ispartof>Computational and mathematical organization theory, 2021-06, Vol.27 (2), p.195-230</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-2de404cf4da6d13629571ebcedd7e9cb9bb21d0979cbe24d41e1fe6b0c9e65d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10588-020-09309-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10588-020-09309-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ortiz-Gaona, Raúl M.</creatorcontrib><creatorcontrib>Postigo-Boix, Marcos</creatorcontrib><creatorcontrib>Melús-Moreno, José L.</creatorcontrib><title>Extent prediction of the information and influence propagation in online social networks</title><title>Computational and mathematical organization theory</title><addtitle>Comput Math Organ Theory</addtitle><description>We present a new mathematical model that predicts the number of users informed and influenced by messages that are propagated in an online social network. Our model is based on a new way of quantifying the tie-strength, which in turn considers the affinity and relevance between nodes. We could verify that the messages to inform and influence, as well as their importance, produce different propagation behaviors in an online social network. We carried out laboratory tests with our model and with the baseline models Linear Threshold and Independent Cascade , which are currently used in many scientific works. The results were evaluated by comparing them with empirical data. The tests show conclusively that the predictions of our model are notably more accurate and precise than the predictions of the baseline models. Our model can contribute to the development of models that maximize the propagation of messages; to predict the spread of viruses in computer networks, mobile telephony and online social networks.</description><subject>Affinity</subject><subject>Artificial Intelligence</subject><subject>Business and Management</subject><subject>Cellular telephony</subject><subject>Computer networks</subject><subject>Computer viruses</subject><subject>Laboratory tests</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Messages</subject><subject>Methodology of the Social Sciences</subject><subject>Mobile computing</subject><subject>Operations Research/Decision Theory</subject><subject>Organization theory</subject><subject>Propagation</subject><subject>S.I.: Social Cyber-Security</subject><subject>Social networks</subject><subject>Sociology</subject><subject>Telephony</subject><subject>Viruses</subject><issn>1381-298X</issn><issn>1572-9346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59VJsptsjlLqBxS8KPQWdpPZunWb1GSL-u9Nu0JvwsBMMs87M7yEXFO4pQDyLlIoqyoHBjkoDioXJ2RCS8lyxQtxmmpe0ZypanlOLmJcA4CSHCZkOf8e0A3ZNqDtzNB5l_k2G94x61zrw6Y-fNXO7t_9Dp3BxPptvRo7XeJd3znMojdd3WcOhy8fPuIlOWvrPuLVX56St4f56-wpX7w8Ps_uF7nhkg45s1hAYdrC1sJSLpgqJcXGoLUSlWlU0zBq07GpRlbYgiJtUTRgFIrSSj4lN-PcdNXnDuOg134XXFqpWVlQyriQe4qNlAk-xoCt3oZuU4cfTUHvHdSjgzo5qA8OapFE2ShC410XjxIpoEwBLCF8RGJquhWG4_Z_Bv8CCpWANQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ortiz-Gaona, Raúl M.</creator><creator>Postigo-Boix, Marcos</creator><creator>Melús-Moreno, José L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20210601</creationdate><title>Extent prediction of the information and influence propagation in online social networks</title><author>Ortiz-Gaona, Raúl M. ; Postigo-Boix, Marcos ; Melús-Moreno, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-2de404cf4da6d13629571ebcedd7e9cb9bb21d0979cbe24d41e1fe6b0c9e65d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affinity</topic><topic>Artificial Intelligence</topic><topic>Business and Management</topic><topic>Cellular telephony</topic><topic>Computer networks</topic><topic>Computer viruses</topic><topic>Laboratory tests</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Messages</topic><topic>Methodology of the Social Sciences</topic><topic>Mobile computing</topic><topic>Operations Research/Decision Theory</topic><topic>Organization theory</topic><topic>Propagation</topic><topic>S.I.: Social Cyber-Security</topic><topic>Social networks</topic><topic>Sociology</topic><topic>Telephony</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortiz-Gaona, Raúl M.</creatorcontrib><creatorcontrib>Postigo-Boix, Marcos</creatorcontrib><creatorcontrib>Melús-Moreno, José L.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational and mathematical organization theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortiz-Gaona, Raúl M.</au><au>Postigo-Boix, Marcos</au><au>Melús-Moreno, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extent prediction of the information and influence propagation in online social networks</atitle><jtitle>Computational and mathematical organization theory</jtitle><stitle>Comput Math Organ Theory</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>195</spage><epage>230</epage><pages>195-230</pages><issn>1381-298X</issn><eissn>1572-9346</eissn><abstract>We present a new mathematical model that predicts the number of users informed and influenced by messages that are propagated in an online social network. Our model is based on a new way of quantifying the tie-strength, which in turn considers the affinity and relevance between nodes. We could verify that the messages to inform and influence, as well as their importance, produce different propagation behaviors in an online social network. We carried out laboratory tests with our model and with the baseline models Linear Threshold and Independent Cascade , which are currently used in many scientific works. The results were evaluated by comparing them with empirical data. The tests show conclusively that the predictions of our model are notably more accurate and precise than the predictions of the baseline models. Our model can contribute to the development of models that maximize the propagation of messages; to predict the spread of viruses in computer networks, mobile telephony and online social networks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10588-020-09309-6</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1381-298X
ispartof Computational and mathematical organization theory, 2021-06, Vol.27 (2), p.195-230
issn 1381-298X
1572-9346
language eng
recordid cdi_proquest_journals_2541123677
source SpringerLink Journals
subjects Affinity
Artificial Intelligence
Business and Management
Cellular telephony
Computer networks
Computer viruses
Laboratory tests
Management
Mathematical models
Messages
Methodology of the Social Sciences
Mobile computing
Operations Research/Decision Theory
Organization theory
Propagation
S.I.: Social Cyber-Security
Social networks
Sociology
Telephony
Viruses
title Extent prediction of the information and influence propagation in online social networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extent%20prediction%20of%20the%20information%20and%20influence%20propagation%20in%20online%20social%20networks&rft.jtitle=Computational%20and%20mathematical%20organization%20theory&rft.au=Ortiz-Gaona,%20Ra%C3%BAl%20M.&rft.date=2021-06-01&rft.volume=27&rft.issue=2&rft.spage=195&rft.epage=230&rft.pages=195-230&rft.issn=1381-298X&rft.eissn=1572-9346&rft_id=info:doi/10.1007/s10588-020-09309-6&rft_dat=%3Cproquest_cross%3E2541123677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541123677&rft_id=info:pmid/&rfr_iscdi=true