Shape programming lines of concentrated Gaussian curvature

Liquid crystal elastomers (LCEs) can undergo large reversible contractions along their nematic director upon heating or illumination. A spatially patterned director within a flat LCE sheet, thus, encodes a pattern of contraction on heating, which can morph the sheet into a curved shell, akin to how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-06, Vol.129 (22)
Hauptverfasser: Duffy, D., Cmok, L., Biggins, J. S., Krishna, A., Modes, C. D., Abdelrahman, M. K., Javed, M., Ware, T. H., Feng, F., Warner, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Journal of applied physics
container_volume 129
creator Duffy, D.
Cmok, L.
Biggins, J. S.
Krishna, A.
Modes, C. D.
Abdelrahman, M. K.
Javed, M.
Ware, T. H.
Feng, F.
Warner, M.
description Liquid crystal elastomers (LCEs) can undergo large reversible contractions along their nematic director upon heating or illumination. A spatially patterned director within a flat LCE sheet, thus, encodes a pattern of contraction on heating, which can morph the sheet into a curved shell, akin to how a pattern of growth sculpts a developing organism. Here, we consider theoretically, numerically, and experimentally patterns constructed from regions of radial and circular director, which, in isolation, would form cones and anticones. The resultant surfaces contain curved ridges with sharp V-shaped cross sections, associated with the boundaries between regions in the patterns. Such ridges may be created in positively and negatively curved variants and, since they bear Gauss curvature (quantified here via the Gauss–Bonnet theorem), they cannot be flattened without energetically prohibitive stretch. Our experiments and numerics highlight that, although such ridges cannot be flattened isometrically, they can deform isometrically by trading the (singular) curvature of the V angle against the (finite) curvature of the ridge line. Furthermore, in finite thickness sheets, the sharp ridges are inevitably non-isometrically blunted to relieve bend, resulting in a modest smearing out of the encoded singular Gauss curvature. We close by discussing the use of such features as actuating linear features, such as probes, tongues, and grippers. We speculate on similarities between these patterns of shape change and those found during the morphogenesis of several biological systems.
doi_str_mv 10.1063/5.0044158
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2541078461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541078461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-97ca635354bea1b3bcf012ce0d0cc9eab74c53204acc87d4fad5b21a9e4b4003</originalsourceid><addsrcrecordid>eNqd0E9LAzEQBfAgCtbqwW-w4Elh62ST7B9vUmoVCh7sPczOZuuWNlmTbMFv70oL3j29y483w2PslsOMQy4e1QxASq7KMzbhUFZpoRScswlAxtOyKqpLdhXCFoDzUlQT9vTxib1Jeu82Hvf7zm6SXWdNSFybkLNkbPQYTZMscQihQ5vQ4A8YB2-u2UWLu2BuTjll65fFev6art6Xb_PnVUoiz2JaFYS5UELJ2iCvRU0t8IwMNEBUGawLSUpkIJGoLBrZYqPqjGNlZC0BxJTdHWvHH78GE6LeusHb8aLOlORQlDLno7o_KvIuBG9a3ftuj_5bc9C_y2ilT8uM9uFoA3URY-fs__DB-T-o-6YVPy0RccA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541078461</pqid></control><display><type>article</type><title>Shape programming lines of concentrated Gaussian curvature</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Duffy, D. ; Cmok, L. ; Biggins, J. S. ; Krishna, A. ; Modes, C. D. ; Abdelrahman, M. K. ; Javed, M. ; Ware, T. H. ; Feng, F. ; Warner, M.</creator><creatorcontrib>Duffy, D. ; Cmok, L. ; Biggins, J. S. ; Krishna, A. ; Modes, C. D. ; Abdelrahman, M. K. ; Javed, M. ; Ware, T. H. ; Feng, F. ; Warner, M.</creatorcontrib><description>Liquid crystal elastomers (LCEs) can undergo large reversible contractions along their nematic director upon heating or illumination. A spatially patterned director within a flat LCE sheet, thus, encodes a pattern of contraction on heating, which can morph the sheet into a curved shell, akin to how a pattern of growth sculpts a developing organism. Here, we consider theoretically, numerically, and experimentally patterns constructed from regions of radial and circular director, which, in isolation, would form cones and anticones. The resultant surfaces contain curved ridges with sharp V-shaped cross sections, associated with the boundaries between regions in the patterns. Such ridges may be created in positively and negatively curved variants and, since they bear Gauss curvature (quantified here via the Gauss–Bonnet theorem), they cannot be flattened without energetically prohibitive stretch. Our experiments and numerics highlight that, although such ridges cannot be flattened isometrically, they can deform isometrically by trading the (singular) curvature of the V angle against the (finite) curvature of the ridge line. Furthermore, in finite thickness sheets, the sharp ridges are inevitably non-isometrically blunted to relieve bend, resulting in a modest smearing out of the encoded singular Gauss curvature. We close by discussing the use of such features as actuating linear features, such as probes, tongues, and grippers. We speculate on similarities between these patterns of shape change and those found during the morphogenesis of several biological systems.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0044158</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Cones ; Curvature ; Elastomers ; Galling ; Grippers ; Heating ; Liquid crystals ; Ridges ; Shape</subject><ispartof>Journal of applied physics, 2021-06, Vol.129 (22)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-97ca635354bea1b3bcf012ce0d0cc9eab74c53204acc87d4fad5b21a9e4b4003</citedby><cites>FETCH-LOGICAL-c362t-97ca635354bea1b3bcf012ce0d0cc9eab74c53204acc87d4fad5b21a9e4b4003</cites><orcidid>0000-0002-9388-2561 ; 0000-0002-0174-6117 ; 0000-0002-0383-5527 ; 0000-0001-9940-0730 ; 0000-0002-9291-500X ; 0000-0002-7452-2421 ; 0000-0003-3172-0265 ; 0000-0001-7996-7393 ; 0000-0002-5456-670X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0044158$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Duffy, D.</creatorcontrib><creatorcontrib>Cmok, L.</creatorcontrib><creatorcontrib>Biggins, J. S.</creatorcontrib><creatorcontrib>Krishna, A.</creatorcontrib><creatorcontrib>Modes, C. D.</creatorcontrib><creatorcontrib>Abdelrahman, M. K.</creatorcontrib><creatorcontrib>Javed, M.</creatorcontrib><creatorcontrib>Ware, T. H.</creatorcontrib><creatorcontrib>Feng, F.</creatorcontrib><creatorcontrib>Warner, M.</creatorcontrib><title>Shape programming lines of concentrated Gaussian curvature</title><title>Journal of applied physics</title><description>Liquid crystal elastomers (LCEs) can undergo large reversible contractions along their nematic director upon heating or illumination. A spatially patterned director within a flat LCE sheet, thus, encodes a pattern of contraction on heating, which can morph the sheet into a curved shell, akin to how a pattern of growth sculpts a developing organism. Here, we consider theoretically, numerically, and experimentally patterns constructed from regions of radial and circular director, which, in isolation, would form cones and anticones. The resultant surfaces contain curved ridges with sharp V-shaped cross sections, associated with the boundaries between regions in the patterns. Such ridges may be created in positively and negatively curved variants and, since they bear Gauss curvature (quantified here via the Gauss–Bonnet theorem), they cannot be flattened without energetically prohibitive stretch. Our experiments and numerics highlight that, although such ridges cannot be flattened isometrically, they can deform isometrically by trading the (singular) curvature of the V angle against the (finite) curvature of the ridge line. Furthermore, in finite thickness sheets, the sharp ridges are inevitably non-isometrically blunted to relieve bend, resulting in a modest smearing out of the encoded singular Gauss curvature. We close by discussing the use of such features as actuating linear features, such as probes, tongues, and grippers. We speculate on similarities between these patterns of shape change and those found during the morphogenesis of several biological systems.</description><subject>Applied physics</subject><subject>Cones</subject><subject>Curvature</subject><subject>Elastomers</subject><subject>Galling</subject><subject>Grippers</subject><subject>Heating</subject><subject>Liquid crystals</subject><subject>Ridges</subject><subject>Shape</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E9LAzEQBfAgCtbqwW-w4Elh62ST7B9vUmoVCh7sPczOZuuWNlmTbMFv70oL3j29y483w2PslsOMQy4e1QxASq7KMzbhUFZpoRScswlAxtOyKqpLdhXCFoDzUlQT9vTxib1Jeu82Hvf7zm6SXWdNSFybkLNkbPQYTZMscQihQ5vQ4A8YB2-u2UWLu2BuTjll65fFev6art6Xb_PnVUoiz2JaFYS5UELJ2iCvRU0t8IwMNEBUGawLSUpkIJGoLBrZYqPqjGNlZC0BxJTdHWvHH78GE6LeusHb8aLOlORQlDLno7o_KvIuBG9a3ftuj_5bc9C_y2ilT8uM9uFoA3URY-fs__DB-T-o-6YVPy0RccA</recordid><startdate>20210614</startdate><enddate>20210614</enddate><creator>Duffy, D.</creator><creator>Cmok, L.</creator><creator>Biggins, J. S.</creator><creator>Krishna, A.</creator><creator>Modes, C. D.</creator><creator>Abdelrahman, M. K.</creator><creator>Javed, M.</creator><creator>Ware, T. H.</creator><creator>Feng, F.</creator><creator>Warner, M.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9388-2561</orcidid><orcidid>https://orcid.org/0000-0002-0174-6117</orcidid><orcidid>https://orcid.org/0000-0002-0383-5527</orcidid><orcidid>https://orcid.org/0000-0001-9940-0730</orcidid><orcidid>https://orcid.org/0000-0002-9291-500X</orcidid><orcidid>https://orcid.org/0000-0002-7452-2421</orcidid><orcidid>https://orcid.org/0000-0003-3172-0265</orcidid><orcidid>https://orcid.org/0000-0001-7996-7393</orcidid><orcidid>https://orcid.org/0000-0002-5456-670X</orcidid></search><sort><creationdate>20210614</creationdate><title>Shape programming lines of concentrated Gaussian curvature</title><author>Duffy, D. ; Cmok, L. ; Biggins, J. S. ; Krishna, A. ; Modes, C. D. ; Abdelrahman, M. K. ; Javed, M. ; Ware, T. H. ; Feng, F. ; Warner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-97ca635354bea1b3bcf012ce0d0cc9eab74c53204acc87d4fad5b21a9e4b4003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Cones</topic><topic>Curvature</topic><topic>Elastomers</topic><topic>Galling</topic><topic>Grippers</topic><topic>Heating</topic><topic>Liquid crystals</topic><topic>Ridges</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duffy, D.</creatorcontrib><creatorcontrib>Cmok, L.</creatorcontrib><creatorcontrib>Biggins, J. S.</creatorcontrib><creatorcontrib>Krishna, A.</creatorcontrib><creatorcontrib>Modes, C. D.</creatorcontrib><creatorcontrib>Abdelrahman, M. K.</creatorcontrib><creatorcontrib>Javed, M.</creatorcontrib><creatorcontrib>Ware, T. H.</creatorcontrib><creatorcontrib>Feng, F.</creatorcontrib><creatorcontrib>Warner, M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duffy, D.</au><au>Cmok, L.</au><au>Biggins, J. S.</au><au>Krishna, A.</au><au>Modes, C. D.</au><au>Abdelrahman, M. K.</au><au>Javed, M.</au><au>Ware, T. H.</au><au>Feng, F.</au><au>Warner, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape programming lines of concentrated Gaussian curvature</atitle><jtitle>Journal of applied physics</jtitle><date>2021-06-14</date><risdate>2021</risdate><volume>129</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Liquid crystal elastomers (LCEs) can undergo large reversible contractions along their nematic director upon heating or illumination. A spatially patterned director within a flat LCE sheet, thus, encodes a pattern of contraction on heating, which can morph the sheet into a curved shell, akin to how a pattern of growth sculpts a developing organism. Here, we consider theoretically, numerically, and experimentally patterns constructed from regions of radial and circular director, which, in isolation, would form cones and anticones. The resultant surfaces contain curved ridges with sharp V-shaped cross sections, associated with the boundaries between regions in the patterns. Such ridges may be created in positively and negatively curved variants and, since they bear Gauss curvature (quantified here via the Gauss–Bonnet theorem), they cannot be flattened without energetically prohibitive stretch. Our experiments and numerics highlight that, although such ridges cannot be flattened isometrically, they can deform isometrically by trading the (singular) curvature of the V angle against the (finite) curvature of the ridge line. Furthermore, in finite thickness sheets, the sharp ridges are inevitably non-isometrically blunted to relieve bend, resulting in a modest smearing out of the encoded singular Gauss curvature. We close by discussing the use of such features as actuating linear features, such as probes, tongues, and grippers. We speculate on similarities between these patterns of shape change and those found during the morphogenesis of several biological systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0044158</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9388-2561</orcidid><orcidid>https://orcid.org/0000-0002-0174-6117</orcidid><orcidid>https://orcid.org/0000-0002-0383-5527</orcidid><orcidid>https://orcid.org/0000-0001-9940-0730</orcidid><orcidid>https://orcid.org/0000-0002-9291-500X</orcidid><orcidid>https://orcid.org/0000-0002-7452-2421</orcidid><orcidid>https://orcid.org/0000-0003-3172-0265</orcidid><orcidid>https://orcid.org/0000-0001-7996-7393</orcidid><orcidid>https://orcid.org/0000-0002-5456-670X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-06, Vol.129 (22)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2541078461
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Cones
Curvature
Elastomers
Galling
Grippers
Heating
Liquid crystals
Ridges
Shape
title Shape programming lines of concentrated Gaussian curvature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20programming%20lines%20of%20concentrated%20Gaussian%20curvature&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Duffy,%20D.&rft.date=2021-06-14&rft.volume=129&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0044158&rft_dat=%3Cproquest_scita%3E2541078461%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541078461&rft_id=info:pmid/&rfr_iscdi=true