Ultra-broadband infrared gas sensor for pollution detection: the TRIAGE project

Air pollution is one of the largest risk factors for disease or premature death globally, yet current portable monitoring technology cannot provide adequate protection at a local community level. Within the TRIAGE project, a smart, compact and cost-effective air quality sensor network will be develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JPhys photonics 2021-07, Vol.3 (3), p.31003
Hauptverfasser: Napier, Bruce, Bang, Ole, Markos, Christos, Moselund, Peter, Huot, Laurent, Harren, Frans J M, Khodabakhsh, Amir, Martin, Hans, Briano, Floria Ottonello, Balet, Laurent, Lecomte, Steve, Petersen, Christian R, Israelsen, Niels, Bastviken, David, Gålfalk, Magnus, Kubiszyn, Łukasz, Warzybok, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 31003
container_title JPhys photonics
container_volume 3
creator Napier, Bruce
Bang, Ole
Markos, Christos
Moselund, Peter
Huot, Laurent
Harren, Frans J M
Khodabakhsh, Amir
Martin, Hans
Briano, Floria Ottonello
Balet, Laurent
Lecomte, Steve
Petersen, Christian R
Israelsen, Niels
Bastviken, David
Gålfalk, Magnus
Kubiszyn, Łukasz
Warzybok, Piotr
description Air pollution is one of the largest risk factors for disease or premature death globally, yet current portable monitoring technology cannot provide adequate protection at a local community level. Within the TRIAGE project, a smart, compact and cost-effective air quality sensor network will be developed for the hyperspectral detection of gases which are relevant for atmospheric pollution monitoring or dangerous for human health. The sensor is based on a mid-infrared supercontinuum source, providing ultra-bright emission across the 2–10 µ m wavelength region. Within this spectral range, harmful gaseous species can be detected with high sensitivity and selectivity. The spectroscopic sensor, which includes a novel multi-pass cell and detector, enables a smart robust photonic sensing system for real-time detection. With built-in chemometric analysis and cloud connection, the sensor will feed advanced deep-learning algorithms for various analyses, ranging from long-term continental trends in air pollution to urgent local warnings and alerts. Community-based distributed pollution sensing tests will be verified on municipal building rooftops and local transport platforms.
doi_str_mv 10.1088/2515-7647/ac0542
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2540835075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540835075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-382929fe428be7690bf5a6a2d4aae7fa39640ab3ea48911457c67c6ea9e216393</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhoMoWGrvHgMeNXa_kk28lVproVCQ1usySXbblJhddxPEf--GSPWgzAwzDM-8DG8QXGN0j1GaTkmM44gnjE-hQDEjZ8HotDr_NV8GE-eOCCHCM4ZIMgo2u7q1EOVWQ5lDU4ZVoyxYWYZ7cKGTjdM2VL6MruuurXQTlrKVRT89hO1BhtuX1Wy5CI3VR7--Ci4U1E5Ovvs42D0ttvPnaL1ZruazdVQwwtqIpiQjmZKMpLnkSYZyFUMCpGQAkiugWcIQ5FQCSzOMWcyLxKeETBKc0IyOg2jQdR_SdLkwtnoD-yk0VOKxep0JbfeirjqBeZKS2PM3A-__fO-ka8VRd7bxLwoSM5TSGPGeQgNVWO2cleqki5HonRa9laK3UgxO-5Pb4aTS5kfzaMxBt7oR1AeiGCEqTKk8ffcH_a_4Fy_fjMo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540835075</pqid></control><display><type>article</type><title>Ultra-broadband infrared gas sensor for pollution detection: the TRIAGE project</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><creator>Napier, Bruce ; Bang, Ole ; Markos, Christos ; Moselund, Peter ; Huot, Laurent ; Harren, Frans J M ; Khodabakhsh, Amir ; Martin, Hans ; Briano, Floria Ottonello ; Balet, Laurent ; Lecomte, Steve ; Petersen, Christian R ; Israelsen, Niels ; Bastviken, David ; Gålfalk, Magnus ; Kubiszyn, Łukasz ; Warzybok, Piotr</creator><creatorcontrib>Napier, Bruce ; Bang, Ole ; Markos, Christos ; Moselund, Peter ; Huot, Laurent ; Harren, Frans J M ; Khodabakhsh, Amir ; Martin, Hans ; Briano, Floria Ottonello ; Balet, Laurent ; Lecomte, Steve ; Petersen, Christian R ; Israelsen, Niels ; Bastviken, David ; Gålfalk, Magnus ; Kubiszyn, Łukasz ; Warzybok, Piotr</creatorcontrib><description>Air pollution is one of the largest risk factors for disease or premature death globally, yet current portable monitoring technology cannot provide adequate protection at a local community level. Within the TRIAGE project, a smart, compact and cost-effective air quality sensor network will be developed for the hyperspectral detection of gases which are relevant for atmospheric pollution monitoring or dangerous for human health. The sensor is based on a mid-infrared supercontinuum source, providing ultra-bright emission across the 2–10 µ m wavelength region. Within this spectral range, harmful gaseous species can be detected with high sensitivity and selectivity. The spectroscopic sensor, which includes a novel multi-pass cell and detector, enables a smart robust photonic sensing system for real-time detection. With built-in chemometric analysis and cloud connection, the sensor will feed advanced deep-learning algorithms for various analyses, ranging from long-term continental trends in air pollution to urgent local warnings and alerts. Community-based distributed pollution sensing tests will be verified on municipal building rooftops and local transport platforms.</description><identifier>ISSN: 2515-7647</identifier><identifier>EISSN: 2515-7647</identifier><identifier>DOI: 10.1088/2515-7647/ac0542</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Air pollution ; Air quality ; Algorithms ; big data repositories ; Broadband ; deep learning algorithms ; Environmental monitoring ; Gas sensors ; Infrared detectors ; Machine learning ; mid-infrared ; Outdoor air quality ; Pollution detection ; Pollution monitoring ; Risk analysis ; Selectivity ; Sensors ; spectroscopy ; supercontinuum source ; trace gas detection</subject><ispartof>JPhys photonics, 2021-07, Vol.3 (3), p.31003</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-382929fe428be7690bf5a6a2d4aae7fa39640ab3ea48911457c67c6ea9e216393</citedby><cites>FETCH-LOGICAL-c424t-382929fe428be7690bf5a6a2d4aae7fa39640ab3ea48911457c67c6ea9e216393</cites><orcidid>0000-0001-7223-7478 ; 0000-0003-0038-2152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7647/ac0542/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,552,778,782,862,883,27911,27912,38877,53854</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176825$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Napier, Bruce</creatorcontrib><creatorcontrib>Bang, Ole</creatorcontrib><creatorcontrib>Markos, Christos</creatorcontrib><creatorcontrib>Moselund, Peter</creatorcontrib><creatorcontrib>Huot, Laurent</creatorcontrib><creatorcontrib>Harren, Frans J M</creatorcontrib><creatorcontrib>Khodabakhsh, Amir</creatorcontrib><creatorcontrib>Martin, Hans</creatorcontrib><creatorcontrib>Briano, Floria Ottonello</creatorcontrib><creatorcontrib>Balet, Laurent</creatorcontrib><creatorcontrib>Lecomte, Steve</creatorcontrib><creatorcontrib>Petersen, Christian R</creatorcontrib><creatorcontrib>Israelsen, Niels</creatorcontrib><creatorcontrib>Bastviken, David</creatorcontrib><creatorcontrib>Gålfalk, Magnus</creatorcontrib><creatorcontrib>Kubiszyn, Łukasz</creatorcontrib><creatorcontrib>Warzybok, Piotr</creatorcontrib><title>Ultra-broadband infrared gas sensor for pollution detection: the TRIAGE project</title><title>JPhys photonics</title><addtitle>JPhysPhotonics</addtitle><addtitle>J. Phys. Photonics</addtitle><description>Air pollution is one of the largest risk factors for disease or premature death globally, yet current portable monitoring technology cannot provide adequate protection at a local community level. Within the TRIAGE project, a smart, compact and cost-effective air quality sensor network will be developed for the hyperspectral detection of gases which are relevant for atmospheric pollution monitoring or dangerous for human health. The sensor is based on a mid-infrared supercontinuum source, providing ultra-bright emission across the 2–10 µ m wavelength region. Within this spectral range, harmful gaseous species can be detected with high sensitivity and selectivity. The spectroscopic sensor, which includes a novel multi-pass cell and detector, enables a smart robust photonic sensing system for real-time detection. With built-in chemometric analysis and cloud connection, the sensor will feed advanced deep-learning algorithms for various analyses, ranging from long-term continental trends in air pollution to urgent local warnings and alerts. Community-based distributed pollution sensing tests will be verified on municipal building rooftops and local transport platforms.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Algorithms</subject><subject>big data repositories</subject><subject>Broadband</subject><subject>deep learning algorithms</subject><subject>Environmental monitoring</subject><subject>Gas sensors</subject><subject>Infrared detectors</subject><subject>Machine learning</subject><subject>mid-infrared</subject><subject>Outdoor air quality</subject><subject>Pollution detection</subject><subject>Pollution monitoring</subject><subject>Risk analysis</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>spectroscopy</subject><subject>supercontinuum source</subject><subject>trace gas detection</subject><issn>2515-7647</issn><issn>2515-7647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><recordid>eNp1kE1Lw0AQhoMoWGrvHgMeNXa_kk28lVproVCQ1usySXbblJhddxPEf--GSPWgzAwzDM-8DG8QXGN0j1GaTkmM44gnjE-hQDEjZ8HotDr_NV8GE-eOCCHCM4ZIMgo2u7q1EOVWQ5lDU4ZVoyxYWYZ7cKGTjdM2VL6MruuurXQTlrKVRT89hO1BhtuX1Wy5CI3VR7--Ci4U1E5Ovvs42D0ttvPnaL1ZruazdVQwwtqIpiQjmZKMpLnkSYZyFUMCpGQAkiugWcIQ5FQCSzOMWcyLxKeETBKc0IyOg2jQdR_SdLkwtnoD-yk0VOKxep0JbfeirjqBeZKS2PM3A-__fO-ka8VRd7bxLwoSM5TSGPGeQgNVWO2cleqki5HonRa9laK3UgxO-5Pb4aTS5kfzaMxBt7oR1AeiGCEqTKk8ffcH_a_4Fy_fjMo</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Napier, Bruce</creator><creator>Bang, Ole</creator><creator>Markos, Christos</creator><creator>Moselund, Peter</creator><creator>Huot, Laurent</creator><creator>Harren, Frans J M</creator><creator>Khodabakhsh, Amir</creator><creator>Martin, Hans</creator><creator>Briano, Floria Ottonello</creator><creator>Balet, Laurent</creator><creator>Lecomte, Steve</creator><creator>Petersen, Christian R</creator><creator>Israelsen, Niels</creator><creator>Bastviken, David</creator><creator>Gålfalk, Magnus</creator><creator>Kubiszyn, Łukasz</creator><creator>Warzybok, Piotr</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-7223-7478</orcidid><orcidid>https://orcid.org/0000-0003-0038-2152</orcidid></search><sort><creationdate>20210701</creationdate><title>Ultra-broadband infrared gas sensor for pollution detection: the TRIAGE project</title><author>Napier, Bruce ; Bang, Ole ; Markos, Christos ; Moselund, Peter ; Huot, Laurent ; Harren, Frans J M ; Khodabakhsh, Amir ; Martin, Hans ; Briano, Floria Ottonello ; Balet, Laurent ; Lecomte, Steve ; Petersen, Christian R ; Israelsen, Niels ; Bastviken, David ; Gålfalk, Magnus ; Kubiszyn, Łukasz ; Warzybok, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-382929fe428be7690bf5a6a2d4aae7fa39640ab3ea48911457c67c6ea9e216393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Algorithms</topic><topic>big data repositories</topic><topic>Broadband</topic><topic>deep learning algorithms</topic><topic>Environmental monitoring</topic><topic>Gas sensors</topic><topic>Infrared detectors</topic><topic>Machine learning</topic><topic>mid-infrared</topic><topic>Outdoor air quality</topic><topic>Pollution detection</topic><topic>Pollution monitoring</topic><topic>Risk analysis</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>spectroscopy</topic><topic>supercontinuum source</topic><topic>trace gas detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Napier, Bruce</creatorcontrib><creatorcontrib>Bang, Ole</creatorcontrib><creatorcontrib>Markos, Christos</creatorcontrib><creatorcontrib>Moselund, Peter</creatorcontrib><creatorcontrib>Huot, Laurent</creatorcontrib><creatorcontrib>Harren, Frans J M</creatorcontrib><creatorcontrib>Khodabakhsh, Amir</creatorcontrib><creatorcontrib>Martin, Hans</creatorcontrib><creatorcontrib>Briano, Floria Ottonello</creatorcontrib><creatorcontrib>Balet, Laurent</creatorcontrib><creatorcontrib>Lecomte, Steve</creatorcontrib><creatorcontrib>Petersen, Christian R</creatorcontrib><creatorcontrib>Israelsen, Niels</creatorcontrib><creatorcontrib>Bastviken, David</creatorcontrib><creatorcontrib>Gålfalk, Magnus</creatorcontrib><creatorcontrib>Kubiszyn, Łukasz</creatorcontrib><creatorcontrib>Warzybok, Piotr</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>JPhys photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Napier, Bruce</au><au>Bang, Ole</au><au>Markos, Christos</au><au>Moselund, Peter</au><au>Huot, Laurent</au><au>Harren, Frans J M</au><au>Khodabakhsh, Amir</au><au>Martin, Hans</au><au>Briano, Floria Ottonello</au><au>Balet, Laurent</au><au>Lecomte, Steve</au><au>Petersen, Christian R</au><au>Israelsen, Niels</au><au>Bastviken, David</au><au>Gålfalk, Magnus</au><au>Kubiszyn, Łukasz</au><au>Warzybok, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-broadband infrared gas sensor for pollution detection: the TRIAGE project</atitle><jtitle>JPhys photonics</jtitle><stitle>JPhysPhotonics</stitle><addtitle>J. Phys. Photonics</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>3</volume><issue>3</issue><spage>31003</spage><pages>31003-</pages><issn>2515-7647</issn><eissn>2515-7647</eissn><abstract>Air pollution is one of the largest risk factors for disease or premature death globally, yet current portable monitoring technology cannot provide adequate protection at a local community level. Within the TRIAGE project, a smart, compact and cost-effective air quality sensor network will be developed for the hyperspectral detection of gases which are relevant for atmospheric pollution monitoring or dangerous for human health. The sensor is based on a mid-infrared supercontinuum source, providing ultra-bright emission across the 2–10 µ m wavelength region. Within this spectral range, harmful gaseous species can be detected with high sensitivity and selectivity. The spectroscopic sensor, which includes a novel multi-pass cell and detector, enables a smart robust photonic sensing system for real-time detection. With built-in chemometric analysis and cloud connection, the sensor will feed advanced deep-learning algorithms for various analyses, ranging from long-term continental trends in air pollution to urgent local warnings and alerts. Community-based distributed pollution sensing tests will be verified on municipal building rooftops and local transport platforms.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7647/ac0542</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7223-7478</orcidid><orcidid>https://orcid.org/0000-0003-0038-2152</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2515-7647
ispartof JPhys photonics, 2021-07, Vol.3 (3), p.31003
issn 2515-7647
2515-7647
language eng
recordid cdi_proquest_journals_2540835075
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online
subjects Air pollution
Air quality
Algorithms
big data repositories
Broadband
deep learning algorithms
Environmental monitoring
Gas sensors
Infrared detectors
Machine learning
mid-infrared
Outdoor air quality
Pollution detection
Pollution monitoring
Risk analysis
Selectivity
Sensors
spectroscopy
supercontinuum source
trace gas detection
title Ultra-broadband infrared gas sensor for pollution detection: the TRIAGE project
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-broadband%20infrared%20gas%20sensor%20for%20pollution%20detection:%20the%20TRIAGE%20project&rft.jtitle=JPhys%20photonics&rft.au=Napier,%20Bruce&rft.date=2021-07-01&rft.volume=3&rft.issue=3&rft.spage=31003&rft.pages=31003-&rft.issn=2515-7647&rft.eissn=2515-7647&rft_id=info:doi/10.1088/2515-7647/ac0542&rft_dat=%3Cproquest_cross%3E2540835075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540835075&rft_id=info:pmid/&rfr_iscdi=true