A topological view on L-fuzzy soft sets: Degree of countably compactness and the Lindelöf property
Keywords: Fuzzy soft set, fuzzy soft topology, compactness, countably compactness, Lindelof property. 1 Introduction The soft set theory, initiated by Molodtsov [24] in 1999, is one of the mathematical methods that aims to describe phenomena and concepts of ambiguous, undefined and imprecise meaning...
Gespeichert in:
Veröffentlicht in: | New trends in mathematical sciences 2021-03, Vol.9 (1), p.19-28 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | New trends in mathematical sciences |
container_volume | 9 |
creator | Qetkin, Vildan |
description | Keywords: Fuzzy soft set, fuzzy soft topology, compactness, countably compactness, Lindelof property. 1 Introduction The soft set theory, initiated by Molodtsov [24] in 1999, is one of the mathematical methods that aims to describe phenomena and concepts of ambiguous, undefined and imprecise meaning. Later in her seminal papers Cetkin [14,15] have presented the parameterized degree of semi-precompactness and the compactness in the fuzzy soft universe. The definitions of countable compactness and the Lindelof property in L-topological spaces have been introduced by Shi [31]. Besides we refer [4,5,6,16,17] for the compactness in the soft unverse. In conclude, we investigate the relations among parameterized compactness degree, countably compactness degree and the degree of having the Lindelof property. 2 Preliminaries Throughout this paper, X refers to a nonempty initial universe, E,K denotes the arbitrary nonempty sets viewed on the sets of parameters and L = (L, V, A/) denotes a complete DeMorgan algebra with the smallest element Ol and the largest element \l- With the underlying lattice L, a mapping A : |
doi_str_mv | 10.20852/ntmsci.2021.411 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2540831857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540831857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1111-afd6633166e7132c41552c923d9483fdc4aa8e6640b362e92decbdae170acadb3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEhX0ztES5xT_JE7CrSq_UiQucLYce11SpXGwXVD6YLwAL4ahHNjLzkqjndGH0AUlC0aqgl0NcRt0lw5GFzmlR2jGaF5mRcHI8T99iuYhbAghtGakEMUM6SWObnS9W3da9fi9gw_sBtxkdrffTzg4G3GAGK7xDaw9AHYWa7cbomr7KantqHQcIASsBoPjK-CmGwz0X58Wj96N4ON0jk6s6gPM__YZerm7fV49ZM3T_eNq2WSapsmUNUJwToWAknKmc5oq65pxU-cVt0bnSlUgRE5aLhjUzIBujQJaEqWVafkZujz8TcFvOwhRbtzODylSsiInFadVUSYXObi0dyF4sHL03Vb5SVIif2nKA035Q1MmmvwbuLVqiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540831857</pqid></control><display><type>article</type><title>A topological view on L-fuzzy soft sets: Degree of countably compactness and the Lindelöf property</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qetkin, Vildan</creator><creatorcontrib>Qetkin, Vildan</creatorcontrib><description>Keywords: Fuzzy soft set, fuzzy soft topology, compactness, countably compactness, Lindelof property. 1 Introduction The soft set theory, initiated by Molodtsov [24] in 1999, is one of the mathematical methods that aims to describe phenomena and concepts of ambiguous, undefined and imprecise meaning. Later in her seminal papers Cetkin [14,15] have presented the parameterized degree of semi-precompactness and the compactness in the fuzzy soft universe. The definitions of countable compactness and the Lindelof property in L-topological spaces have been introduced by Shi [31]. Besides we refer [4,5,6,16,17] for the compactness in the soft unverse. In conclude, we investigate the relations among parameterized compactness degree, countably compactness degree and the degree of having the Lindelof property. 2 Preliminaries Throughout this paper, X refers to a nonempty initial universe, E,K denotes the arbitrary nonempty sets viewed on the sets of parameters and L = (L, V, A/) denotes a complete DeMorgan algebra with the smallest element Ol and the largest element \l- With the underlying lattice L, a mapping A :</description><identifier>ISSN: 2147-5520</identifier><identifier>EISSN: 2147-5520</identifier><identifier>DOI: 10.20852/ntmsci.2021.411</identifier><language>eng</language><publisher>Istanbul: Yildiz Technical University, Faculty of Chemistry and Metallurgy</publisher><subject>Algebra ; Fuzzy sets ; Parameterization ; Set theory ; Topology ; Universe</subject><ispartof>New trends in mathematical sciences, 2021-03, Vol.9 (1), p.19-28</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qetkin, Vildan</creatorcontrib><title>A topological view on L-fuzzy soft sets: Degree of countably compactness and the Lindelöf property</title><title>New trends in mathematical sciences</title><description>Keywords: Fuzzy soft set, fuzzy soft topology, compactness, countably compactness, Lindelof property. 1 Introduction The soft set theory, initiated by Molodtsov [24] in 1999, is one of the mathematical methods that aims to describe phenomena and concepts of ambiguous, undefined and imprecise meaning. Later in her seminal papers Cetkin [14,15] have presented the parameterized degree of semi-precompactness and the compactness in the fuzzy soft universe. The definitions of countable compactness and the Lindelof property in L-topological spaces have been introduced by Shi [31]. Besides we refer [4,5,6,16,17] for the compactness in the soft unverse. In conclude, we investigate the relations among parameterized compactness degree, countably compactness degree and the degree of having the Lindelof property. 2 Preliminaries Throughout this paper, X refers to a nonempty initial universe, E,K denotes the arbitrary nonempty sets viewed on the sets of parameters and L = (L, V, A/) denotes a complete DeMorgan algebra with the smallest element Ol and the largest element \l- With the underlying lattice L, a mapping A :</description><subject>Algebra</subject><subject>Fuzzy sets</subject><subject>Parameterization</subject><subject>Set theory</subject><subject>Topology</subject><subject>Universe</subject><issn>2147-5520</issn><issn>2147-5520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkM1OwzAQhC0EEhX0ztES5xT_JE7CrSq_UiQucLYce11SpXGwXVD6YLwAL4ahHNjLzkqjndGH0AUlC0aqgl0NcRt0lw5GFzmlR2jGaF5mRcHI8T99iuYhbAghtGakEMUM6SWObnS9W3da9fi9gw_sBtxkdrffTzg4G3GAGK7xDaw9AHYWa7cbomr7KantqHQcIASsBoPjK-CmGwz0X58Wj96N4ON0jk6s6gPM__YZerm7fV49ZM3T_eNq2WSapsmUNUJwToWAknKmc5oq65pxU-cVt0bnSlUgRE5aLhjUzIBujQJaEqWVafkZujz8TcFvOwhRbtzODylSsiInFadVUSYXObi0dyF4sHL03Vb5SVIif2nKA035Q1MmmvwbuLVqiQ</recordid><startdate>20210321</startdate><enddate>20210321</enddate><creator>Qetkin, Vildan</creator><general>Yildiz Technical University, Faculty of Chemistry and Metallurgy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210321</creationdate><title>A topological view on L-fuzzy soft sets: Degree of countably compactness and the Lindelöf property</title><author>Qetkin, Vildan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1111-afd6633166e7132c41552c923d9483fdc4aa8e6640b362e92decbdae170acadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Fuzzy sets</topic><topic>Parameterization</topic><topic>Set theory</topic><topic>Topology</topic><topic>Universe</topic><toplevel>online_resources</toplevel><creatorcontrib>Qetkin, Vildan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>New trends in mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qetkin, Vildan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A topological view on L-fuzzy soft sets: Degree of countably compactness and the Lindelöf property</atitle><jtitle>New trends in mathematical sciences</jtitle><date>2021-03-21</date><risdate>2021</risdate><volume>9</volume><issue>1</issue><spage>19</spage><epage>28</epage><pages>19-28</pages><issn>2147-5520</issn><eissn>2147-5520</eissn><abstract>Keywords: Fuzzy soft set, fuzzy soft topology, compactness, countably compactness, Lindelof property. 1 Introduction The soft set theory, initiated by Molodtsov [24] in 1999, is one of the mathematical methods that aims to describe phenomena and concepts of ambiguous, undefined and imprecise meaning. Later in her seminal papers Cetkin [14,15] have presented the parameterized degree of semi-precompactness and the compactness in the fuzzy soft universe. The definitions of countable compactness and the Lindelof property in L-topological spaces have been introduced by Shi [31]. Besides we refer [4,5,6,16,17] for the compactness in the soft unverse. In conclude, we investigate the relations among parameterized compactness degree, countably compactness degree and the degree of having the Lindelof property. 2 Preliminaries Throughout this paper, X refers to a nonempty initial universe, E,K denotes the arbitrary nonempty sets viewed on the sets of parameters and L = (L, V, A/) denotes a complete DeMorgan algebra with the smallest element Ol and the largest element \l- With the underlying lattice L, a mapping A :</abstract><cop>Istanbul</cop><pub>Yildiz Technical University, Faculty of Chemistry and Metallurgy</pub><doi>10.20852/ntmsci.2021.411</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2147-5520 |
ispartof | New trends in mathematical sciences, 2021-03, Vol.9 (1), p.19-28 |
issn | 2147-5520 2147-5520 |
language | eng |
recordid | cdi_proquest_journals_2540831857 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Fuzzy sets Parameterization Set theory Topology Universe |
title | A topological view on L-fuzzy soft sets: Degree of countably compactness and the Lindelöf property |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20topological%20view%20on%20L-fuzzy%20soft%20sets:%20Degree%20of%20countably%20compactness%20and%20the%20Lindel%C3%B6f%20property&rft.jtitle=New%20trends%20in%20mathematical%20sciences&rft.au=Qetkin,%20Vildan&rft.date=2021-03-21&rft.volume=9&rft.issue=1&rft.spage=19&rft.epage=28&rft.pages=19-28&rft.issn=2147-5520&rft.eissn=2147-5520&rft_id=info:doi/10.20852/ntmsci.2021.411&rft_dat=%3Cproquest_cross%3E2540831857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540831857&rft_id=info:pmid/&rfr_iscdi=true |