Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation
Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H 2 . Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined mi...
Gespeichert in:
Veröffentlicht in: | Frontiers of chemical science and engineering 2021, Vol.15 (4), p.882-891 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 891 |
---|---|
container_issue | 4 |
container_start_page | 882 |
container_title | Frontiers of chemical science and engineering |
container_volume | 15 |
creator | Fan, Yiyi Li, Jinyong Wang, Saidi Meng, Xiuxia Jin, Yun Yang, Naitao Meng, Bo Li, Jiaquan Liu, Shaomin |
description | Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H
2
. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni
2+
were assembled to form an MSM supported on Al
2
O
3
hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H
2
/CO
2
mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 10
−8
mol·m
−2
·s
−1
·Pa
−1
. Compared with the original Ti
3
C
2
T
x
/Al
2
O
3
hollow fiber membranes, the permeation of hydrogen through the Ni
2+
-Ti
3
C
2
T
x
/Al
2
O
3
membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni
2+
. The interlayer spacing of MSMs was tuned by Ni
2+
. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni
2+
tailored Ti
3
C
2
T
x
/Al
2
O
3
hollow fiber membranes can inspire promising industrial applications. |
doi_str_mv | 10.1007/s11705-020-1990-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2540761519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540761519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2311-723a7d9898f106a2b48765f0c6a7729ee98218941a2abbc92e0651a1599351433</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EElXpD2CLxAJDwHeO43hEFdCiQheQ2CzHvUCgdYqdDvx7XAXBxHJ3unvvnfQxdgr8EjhXVxFAcZlz5DloncoBGyHXaQOVOvydlT5mkxjbmgvAUgilRuz-sXUftD6fzy-ytvN563sKzq5tT6vs4YU8ZRva1MF6ilnThYz8m_UuHWd4NV1iFmlrg-2T94QdNXYdafLTx-z59uZpOssXy7v59HqROxQAuUJh1UpXumqAlxbrolKlbLgrrVKoiXSFUOkCLNq6dhqJlxIsSK2FhEKIMTsbcreh-9xR7M17tws-vTQoC65KkKCTCgaVC12MgRqzDe3Ghi8D3OypmYGaSdTMnpqB5MHBE5PWv1L4S_7f9A0W7mu3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540761519</pqid></control><display><type>article</type><title>Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fan, Yiyi ; Li, Jinyong ; Wang, Saidi ; Meng, Xiuxia ; Jin, Yun ; Yang, Naitao ; Meng, Bo ; Li, Jiaquan ; Liu, Shaomin</creator><creatorcontrib>Fan, Yiyi ; Li, Jinyong ; Wang, Saidi ; Meng, Xiuxia ; Jin, Yun ; Yang, Naitao ; Meng, Bo ; Li, Jiaquan ; Liu, Shaomin</creatorcontrib><description>Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H
2
. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni
2+
were assembled to form an MSM supported on Al
2
O
3
hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H
2
/CO
2
mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 10
−8
mol·m
−2
·s
−1
·Pa
−1
. Compared with the original Ti
3
C
2
T
x
/Al
2
O
3
hollow fiber membranes, the permeation of hydrogen through the Ni
2+
-Ti
3
C
2
T
x
/Al
2
O
3
membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni
2+
. The interlayer spacing of MSMs was tuned by Ni
2+
. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni
2+
tailored Ti
3
C
2
T
x
/Al
2
O
3
hollow fiber membranes can inspire promising industrial applications.</description><identifier>ISSN: 2095-0179</identifier><identifier>EISSN: 2095-0187</identifier><identifier>DOI: 10.1007/s11705-020-1990-1</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Aluminum oxide ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; Clean energy ; Gas separation ; Hollow fiber membranes ; Hydrogen fuels ; Industrial applications ; Industrial Chemistry/Chemical Engineering ; Interlayers ; Membranes ; MXenes ; Nanostructure ; Nanotechnology ; Nickel ; Research Article ; Room temperature ; Selectivity ; Strong interactions (field theory)</subject><ispartof>Frontiers of chemical science and engineering, 2021, Vol.15 (4), p.882-891</ispartof><rights>Higher Education Press 2020</rights><rights>Higher Education Press 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2311-723a7d9898f106a2b48765f0c6a7729ee98218941a2abbc92e0651a1599351433</citedby><cites>FETCH-LOGICAL-c2311-723a7d9898f106a2b48765f0c6a7729ee98218941a2abbc92e0651a1599351433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11705-020-1990-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11705-020-1990-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fan, Yiyi</creatorcontrib><creatorcontrib>Li, Jinyong</creatorcontrib><creatorcontrib>Wang, Saidi</creatorcontrib><creatorcontrib>Meng, Xiuxia</creatorcontrib><creatorcontrib>Jin, Yun</creatorcontrib><creatorcontrib>Yang, Naitao</creatorcontrib><creatorcontrib>Meng, Bo</creatorcontrib><creatorcontrib>Li, Jiaquan</creatorcontrib><creatorcontrib>Liu, Shaomin</creatorcontrib><title>Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation</title><title>Frontiers of chemical science and engineering</title><addtitle>Front. Chem. Sci. Eng</addtitle><description>Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H
2
. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni
2+
were assembled to form an MSM supported on Al
2
O
3
hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H
2
/CO
2
mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 10
−8
mol·m
−2
·s
−1
·Pa
−1
. Compared with the original Ti
3
C
2
T
x
/Al
2
O
3
hollow fiber membranes, the permeation of hydrogen through the Ni
2+
-Ti
3
C
2
T
x
/Al
2
O
3
membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni
2+
. The interlayer spacing of MSMs was tuned by Ni
2+
. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni
2+
tailored Ti
3
C
2
T
x
/Al
2
O
3
hollow fiber membranes can inspire promising industrial applications.</description><subject>Aluminum oxide</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Clean energy</subject><subject>Gas separation</subject><subject>Hollow fiber membranes</subject><subject>Hydrogen fuels</subject><subject>Industrial applications</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Interlayers</subject><subject>Membranes</subject><subject>MXenes</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Research Article</subject><subject>Room temperature</subject><subject>Selectivity</subject><subject>Strong interactions (field theory)</subject><issn>2095-0179</issn><issn>2095-0187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EElXpD2CLxAJDwHeO43hEFdCiQheQ2CzHvUCgdYqdDvx7XAXBxHJ3unvvnfQxdgr8EjhXVxFAcZlz5DloncoBGyHXaQOVOvydlT5mkxjbmgvAUgilRuz-sXUftD6fzy-ytvN563sKzq5tT6vs4YU8ZRva1MF6ilnThYz8m_UuHWd4NV1iFmlrg-2T94QdNXYdafLTx-z59uZpOssXy7v59HqROxQAuUJh1UpXumqAlxbrolKlbLgrrVKoiXSFUOkCLNq6dhqJlxIsSK2FhEKIMTsbcreh-9xR7M17tws-vTQoC65KkKCTCgaVC12MgRqzDe3Ghi8D3OypmYGaSdTMnpqB5MHBE5PWv1L4S_7f9A0W7mu3</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Fan, Yiyi</creator><creator>Li, Jinyong</creator><creator>Wang, Saidi</creator><creator>Meng, Xiuxia</creator><creator>Jin, Yun</creator><creator>Yang, Naitao</creator><creator>Meng, Bo</creator><creator>Li, Jiaquan</creator><creator>Liu, Shaomin</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation</title><author>Fan, Yiyi ; Li, Jinyong ; Wang, Saidi ; Meng, Xiuxia ; Jin, Yun ; Yang, Naitao ; Meng, Bo ; Li, Jiaquan ; Liu, Shaomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2311-723a7d9898f106a2b48765f0c6a7729ee98218941a2abbc92e0651a1599351433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Clean energy</topic><topic>Gas separation</topic><topic>Hollow fiber membranes</topic><topic>Hydrogen fuels</topic><topic>Industrial applications</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Interlayers</topic><topic>Membranes</topic><topic>MXenes</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Research Article</topic><topic>Room temperature</topic><topic>Selectivity</topic><topic>Strong interactions (field theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yiyi</creatorcontrib><creatorcontrib>Li, Jinyong</creatorcontrib><creatorcontrib>Wang, Saidi</creatorcontrib><creatorcontrib>Meng, Xiuxia</creatorcontrib><creatorcontrib>Jin, Yun</creatorcontrib><creatorcontrib>Yang, Naitao</creatorcontrib><creatorcontrib>Meng, Bo</creatorcontrib><creatorcontrib>Li, Jiaquan</creatorcontrib><creatorcontrib>Liu, Shaomin</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers of chemical science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Yiyi</au><au>Li, Jinyong</au><au>Wang, Saidi</au><au>Meng, Xiuxia</au><au>Jin, Yun</au><au>Yang, Naitao</au><au>Meng, Bo</au><au>Li, Jiaquan</au><au>Liu, Shaomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation</atitle><jtitle>Frontiers of chemical science and engineering</jtitle><stitle>Front. Chem. Sci. Eng</stitle><date>2021</date><risdate>2021</risdate><volume>15</volume><issue>4</issue><spage>882</spage><epage>891</epage><pages>882-891</pages><issn>2095-0179</issn><eissn>2095-0187</eissn><abstract>Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H
2
. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni
2+
were assembled to form an MSM supported on Al
2
O
3
hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H
2
/CO
2
mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 10
−8
mol·m
−2
·s
−1
·Pa
−1
. Compared with the original Ti
3
C
2
T
x
/Al
2
O
3
hollow fiber membranes, the permeation of hydrogen through the Ni
2+
-Ti
3
C
2
T
x
/Al
2
O
3
membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni
2+
. The interlayer spacing of MSMs was tuned by Ni
2+
. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni
2+
tailored Ti
3
C
2
T
x
/Al
2
O
3
hollow fiber membranes can inspire promising industrial applications.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11705-020-1990-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-0179 |
ispartof | Frontiers of chemical science and engineering, 2021, Vol.15 (4), p.882-891 |
issn | 2095-0179 2095-0187 |
language | eng |
recordid | cdi_proquest_journals_2540761519 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum oxide Carbon dioxide Chemistry Chemistry and Materials Science Clean energy Gas separation Hollow fiber membranes Hydrogen fuels Industrial applications Industrial Chemistry/Chemical Engineering Interlayers Membranes MXenes Nanostructure Nanotechnology Nickel Research Article Room temperature Selectivity Strong interactions (field theory) |
title | Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel(II)%20ion-intercalated%20MXene%20membranes%20for%20enhanced%20H2/CO2%20separation&rft.jtitle=Frontiers%20of%20chemical%20science%20and%20engineering&rft.au=Fan,%20Yiyi&rft.date=2021&rft.volume=15&rft.issue=4&rft.spage=882&rft.epage=891&rft.pages=882-891&rft.issn=2095-0179&rft.eissn=2095-0187&rft_id=info:doi/10.1007/s11705-020-1990-1&rft_dat=%3Cproquest_cross%3E2540761519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540761519&rft_id=info:pmid/&rfr_iscdi=true |