A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability
Nonlinear optical materials have gained immense scientific interest in the recent times owing to their vast applications in various fields. Continuous strides are made to design and synthesize materials with large nonlinear optical response and high thermodynamic stability. In this regard, we presen...
Gespeichert in:
Veröffentlicht in: | Journal of inorganic and organometallic polymers and materials 2021-07, Vol.31 (7), p.3062-3076 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3076 |
---|---|
container_issue | 7 |
container_start_page | 3062 |
container_title | Journal of inorganic and organometallic polymers and materials |
container_volume | 31 |
creator | Baloach, Rimsha Ayub, Khurshid Mahmood, Tariq Asif, Anila Tabassum, Sobia Gilani, Mazhar Amjad |
description | Nonlinear optical materials have gained immense scientific interest in the recent times owing to their vast applications in various fields. Continuous strides are made to design and synthesize materials with large nonlinear optical response and high thermodynamic stability. In this regard, we present here bi-alkali metal doping on boron phosphide nanocage as a new strategy to design thermodynamically stable materials with large nonlinear optical response. The geometric, thermodynamic, electronic, optical and nonlinear optical properties of complexes are explored through density functional theory (DFT) simulations. The doping of alkali metal atoms introduces excess of electrons in the host (B
12
P
12
) nanocage. These electrons contribute towards the formation of new HOMOs, which reduce the
HOMO–LUMO
gaps of the designed complexes. The
HOMO–LUMO
gaps of the designed complexes range from 0.63 eV to 3.69 eV. The diffused excess electrons also induce large hyperpolarizability values in the complexes i.e. up to 4.0 × 10
4
au. TD-DFT calculations have been performed for crucial transition states and UV–VIS analysis. Non-covalent interaction (NCI) along with quantum theory of the atoms in molecules (QTAIM) analyses are carried out to understand the bonding interactions between alkali metal atoms and B
12
P
12
nanocage. All the obtained results suggest that bi-alkali metal doped nanocages are exceptionally stable materials with improved NLO response. |
doi_str_mv | 10.1007/s10904-021-02000-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2540761017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540761017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-8ce14b45dda50a37f8e9c583fe457a62faba431383a85fbcd8ab7de8baaabd5f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEs8fYGWJdWBc201YljdSKQjK2pokk8SQ2sE2qvod_DCBItixsMaLe-6MTpIccjjmANlJ4HAKMoURHx4ApOONZIerTKZcKr75-5diO9kN4QVA5KD4TvIxYTNasqfoMVKzYq5mhUkn3St2ht1RxI5duN7YhkXHLiiYxrIz551lD60LfWsqYjO0rsSGwhd9Y5qWzZztjCX07L6PphxKHin0zgZiSxNbdkYxkmfzlvzCVSuLC1MON2BhOhNX-8lWjV2gg5-5lzxfXc7Pb9Lp_fXt-WSalhIgpnlJXBZSVRUqQJHVOZ2WKhc1SZXheFRjgVJwkQvMVV2UVY5FVlFeIGJRqVrsJUfr3t67t3cKUb-4d2-HlXqkJGRjDjwbUqN1qvQuBE-17r1ZoF9pDvpLvl7L14N8_S1fjwdIrKEwhG1D_q_6H-oTiO6J5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540761017</pqid></control><display><type>article</type><title>A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baloach, Rimsha ; Ayub, Khurshid ; Mahmood, Tariq ; Asif, Anila ; Tabassum, Sobia ; Gilani, Mazhar Amjad</creator><creatorcontrib>Baloach, Rimsha ; Ayub, Khurshid ; Mahmood, Tariq ; Asif, Anila ; Tabassum, Sobia ; Gilani, Mazhar Amjad</creatorcontrib><description>Nonlinear optical materials have gained immense scientific interest in the recent times owing to their vast applications in various fields. Continuous strides are made to design and synthesize materials with large nonlinear optical response and high thermodynamic stability. In this regard, we present here bi-alkali metal doping on boron phosphide nanocage as a new strategy to design thermodynamically stable materials with large nonlinear optical response. The geometric, thermodynamic, electronic, optical and nonlinear optical properties of complexes are explored through density functional theory (DFT) simulations. The doping of alkali metal atoms introduces excess of electrons in the host (B
12
P
12
) nanocage. These electrons contribute towards the formation of new HOMOs, which reduce the
HOMO–LUMO
gaps of the designed complexes. The
HOMO–LUMO
gaps of the designed complexes range from 0.63 eV to 3.69 eV. The diffused excess electrons also induce large hyperpolarizability values in the complexes i.e. up to 4.0 × 10
4
au. TD-DFT calculations have been performed for crucial transition states and UV–VIS analysis. Non-covalent interaction (NCI) along with quantum theory of the atoms in molecules (QTAIM) analyses are carried out to understand the bonding interactions between alkali metal atoms and B
12
P
12
nanocage. All the obtained results suggest that bi-alkali metal doped nanocages are exceptionally stable materials with improved NLO response.</description><identifier>ISSN: 1574-1443</identifier><identifier>EISSN: 1574-1451</identifier><identifier>DOI: 10.1007/s10904-021-02000-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alkali metals ; Boron phosphides ; Chemistry ; Chemistry and Materials Science ; Density functional theory ; Design ; Doping ; Electrons ; Inorganic Chemistry ; Molecular orbitals ; Nonlinear optics ; Nonlinear response ; Optical materials ; Optical properties ; Optics ; Organic Chemistry ; Polymer Sciences ; Quantum theory ; Stability</subject><ispartof>Journal of inorganic and organometallic polymers and materials, 2021-07, Vol.31 (7), p.3062-3076</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-8ce14b45dda50a37f8e9c583fe457a62faba431383a85fbcd8ab7de8baaabd5f3</citedby><cites>FETCH-LOGICAL-c400t-8ce14b45dda50a37f8e9c583fe457a62faba431383a85fbcd8ab7de8baaabd5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10904-021-02000-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10904-021-02000-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Baloach, Rimsha</creatorcontrib><creatorcontrib>Ayub, Khurshid</creatorcontrib><creatorcontrib>Mahmood, Tariq</creatorcontrib><creatorcontrib>Asif, Anila</creatorcontrib><creatorcontrib>Tabassum, Sobia</creatorcontrib><creatorcontrib>Gilani, Mazhar Amjad</creatorcontrib><title>A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability</title><title>Journal of inorganic and organometallic polymers and materials</title><addtitle>J Inorg Organomet Polym</addtitle><description>Nonlinear optical materials have gained immense scientific interest in the recent times owing to their vast applications in various fields. Continuous strides are made to design and synthesize materials with large nonlinear optical response and high thermodynamic stability. In this regard, we present here bi-alkali metal doping on boron phosphide nanocage as a new strategy to design thermodynamically stable materials with large nonlinear optical response. The geometric, thermodynamic, electronic, optical and nonlinear optical properties of complexes are explored through density functional theory (DFT) simulations. The doping of alkali metal atoms introduces excess of electrons in the host (B
12
P
12
) nanocage. These electrons contribute towards the formation of new HOMOs, which reduce the
HOMO–LUMO
gaps of the designed complexes. The
HOMO–LUMO
gaps of the designed complexes range from 0.63 eV to 3.69 eV. The diffused excess electrons also induce large hyperpolarizability values in the complexes i.e. up to 4.0 × 10
4
au. TD-DFT calculations have been performed for crucial transition states and UV–VIS analysis. Non-covalent interaction (NCI) along with quantum theory of the atoms in molecules (QTAIM) analyses are carried out to understand the bonding interactions between alkali metal atoms and B
12
P
12
nanocage. All the obtained results suggest that bi-alkali metal doped nanocages are exceptionally stable materials with improved NLO response.</description><subject>Alkali metals</subject><subject>Boron phosphides</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Density functional theory</subject><subject>Design</subject><subject>Doping</subject><subject>Electrons</subject><subject>Inorganic Chemistry</subject><subject>Molecular orbitals</subject><subject>Nonlinear optics</subject><subject>Nonlinear response</subject><subject>Optical materials</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Organic Chemistry</subject><subject>Polymer Sciences</subject><subject>Quantum theory</subject><subject>Stability</subject><issn>1574-1443</issn><issn>1574-1451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEs8fYGWJdWBc201YljdSKQjK2pokk8SQ2sE2qvod_DCBItixsMaLe-6MTpIccjjmANlJ4HAKMoURHx4ApOONZIerTKZcKr75-5diO9kN4QVA5KD4TvIxYTNasqfoMVKzYq5mhUkn3St2ht1RxI5duN7YhkXHLiiYxrIz551lD60LfWsqYjO0rsSGwhd9Y5qWzZztjCX07L6PphxKHin0zgZiSxNbdkYxkmfzlvzCVSuLC1MON2BhOhNX-8lWjV2gg5-5lzxfXc7Pb9Lp_fXt-WSalhIgpnlJXBZSVRUqQJHVOZ2WKhc1SZXheFRjgVJwkQvMVV2UVY5FVlFeIGJRqVrsJUfr3t67t3cKUb-4d2-HlXqkJGRjDjwbUqN1qvQuBE-17r1ZoF9pDvpLvl7L14N8_S1fjwdIrKEwhG1D_q_6H-oTiO6J5w</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Baloach, Rimsha</creator><creator>Ayub, Khurshid</creator><creator>Mahmood, Tariq</creator><creator>Asif, Anila</creator><creator>Tabassum, Sobia</creator><creator>Gilani, Mazhar Amjad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability</title><author>Baloach, Rimsha ; Ayub, Khurshid ; Mahmood, Tariq ; Asif, Anila ; Tabassum, Sobia ; Gilani, Mazhar Amjad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-8ce14b45dda50a37f8e9c583fe457a62faba431383a85fbcd8ab7de8baaabd5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkali metals</topic><topic>Boron phosphides</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Density functional theory</topic><topic>Design</topic><topic>Doping</topic><topic>Electrons</topic><topic>Inorganic Chemistry</topic><topic>Molecular orbitals</topic><topic>Nonlinear optics</topic><topic>Nonlinear response</topic><topic>Optical materials</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Organic Chemistry</topic><topic>Polymer Sciences</topic><topic>Quantum theory</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baloach, Rimsha</creatorcontrib><creatorcontrib>Ayub, Khurshid</creatorcontrib><creatorcontrib>Mahmood, Tariq</creatorcontrib><creatorcontrib>Asif, Anila</creatorcontrib><creatorcontrib>Tabassum, Sobia</creatorcontrib><creatorcontrib>Gilani, Mazhar Amjad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baloach, Rimsha</au><au>Ayub, Khurshid</au><au>Mahmood, Tariq</au><au>Asif, Anila</au><au>Tabassum, Sobia</au><au>Gilani, Mazhar Amjad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability</atitle><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle><stitle>J Inorg Organomet Polym</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>31</volume><issue>7</issue><spage>3062</spage><epage>3076</epage><pages>3062-3076</pages><issn>1574-1443</issn><eissn>1574-1451</eissn><abstract>Nonlinear optical materials have gained immense scientific interest in the recent times owing to their vast applications in various fields. Continuous strides are made to design and synthesize materials with large nonlinear optical response and high thermodynamic stability. In this regard, we present here bi-alkali metal doping on boron phosphide nanocage as a new strategy to design thermodynamically stable materials with large nonlinear optical response. The geometric, thermodynamic, electronic, optical and nonlinear optical properties of complexes are explored through density functional theory (DFT) simulations. The doping of alkali metal atoms introduces excess of electrons in the host (B
12
P
12
) nanocage. These electrons contribute towards the formation of new HOMOs, which reduce the
HOMO–LUMO
gaps of the designed complexes. The
HOMO–LUMO
gaps of the designed complexes range from 0.63 eV to 3.69 eV. The diffused excess electrons also induce large hyperpolarizability values in the complexes i.e. up to 4.0 × 10
4
au. TD-DFT calculations have been performed for crucial transition states and UV–VIS analysis. Non-covalent interaction (NCI) along with quantum theory of the atoms in molecules (QTAIM) analyses are carried out to understand the bonding interactions between alkali metal atoms and B
12
P
12
nanocage. All the obtained results suggest that bi-alkali metal doped nanocages are exceptionally stable materials with improved NLO response.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10904-021-02000-6</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-1443 |
ispartof | Journal of inorganic and organometallic polymers and materials, 2021-07, Vol.31 (7), p.3062-3076 |
issn | 1574-1443 1574-1451 |
language | eng |
recordid | cdi_proquest_journals_2540761017 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alkali metals Boron phosphides Chemistry Chemistry and Materials Science Density functional theory Design Doping Electrons Inorganic Chemistry Molecular orbitals Nonlinear optics Nonlinear response Optical materials Optical properties Optics Organic Chemistry Polymer Sciences Quantum theory Stability |
title | A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Strategy%20of%20bi-Alkali%20Metal%20Doping%20to%20Design%20Boron%20Phosphide%20Nanocages%20of%20High%20Nonlinear%20Optical%20Response%20with%20Better%20Thermodynamic%20Stability&rft.jtitle=Journal%20of%20inorganic%20and%20organometallic%20polymers%20and%20materials&rft.au=Baloach,%20Rimsha&rft.date=2021-07-01&rft.volume=31&rft.issue=7&rft.spage=3062&rft.epage=3076&rft.pages=3062-3076&rft.issn=1574-1443&rft.eissn=1574-1451&rft_id=info:doi/10.1007/s10904-021-02000-6&rft_dat=%3Cproquest_cross%3E2540761017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540761017&rft_id=info:pmid/&rfr_iscdi=true |