A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold

An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine desi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE International journal of materials and manufacturing 2018-01, Vol.11 (4), p.517-528, Article 2018-01-1215
Hauptverfasser: Liu, Yi, Chen, Yi-Hsin, Sawkar, Nandan, Xu, Nan, Gaikwad, Surendra, Seaton, Philip, Singh, Kanwerdip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue 4
container_start_page 517
container_title SAE International journal of materials and manufacturing
container_volume 11
creator Liu, Yi
Chen, Yi-Hsin
Sawkar, Nandan
Xu, Nan
Gaikwad, Surendra
Seaton, Philip
Singh, Kanwerdip
description An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine design. In this work, the mechanical properties important for TMF assessment and modeling of a silicon (Si)- and molybdenum (Mo)-containing ductile cast iron used for exhaust manifold have been evaluated. Tensile, creep, isothermal low cycle fatigue (LCF), and TMF tests have been conducted. Parameters for material modeling, such as the viscoplastic constitutive model and the Neu-Sehitoglu TMF damage model, have been calibrated, validated, and used to evaluate the TMF life of the exhaust manifold. A transient temperature profile created from computational fluid dynamics (CFD) simulation and correlated to thermal survey under exhaust manifold durability (EMD) dynamometer test is used in stress/strain analysis during a thermal cycle. TMF damage is evaluated using the Neu-Sehitoglu TMF model. Although the ferrite-based cast iron does not fully satisfy the requirements of the Neu-Sehitoglu TMF model due to the intergranular embrittlement at 400°C, low ductility at low temperatures, and phase transformation at 820°C-850°C, it is found that the TMF predictions are correlated well to the EMD dynamometer tests. An additional analysis is suggested to address the 400°C intergranular embrittlement.
doi_str_mv 10.4271/2018-01-1215
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2540599175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26645078</jstor_id><sourcerecordid>26645078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-99c127e7c3d45460984167e27426f95ebe5c153835f4959a2a7af9ae5533bdbf3</originalsourceid><addsrcrecordid>eNpVkEtLAzEURoMoWKs7t0LAraN5Z7IstdVixU1dhzTN2CnTSU0y0P57U0Yqru6Dcw-XD4BbjB4ZkfiJIFwWCBeYYH4GBlgxUVBVyvNTL9UluIpxg5CQiJIBeBvBxdqFrd86uzZtbU0DpybVX52Do9Y0h1hH6Fto4HNnU904ODYxwVnIu8l-bbo8vOe7yjera3BRmSa6m986BJ_TyWL8Wsw_Xmbj0bywTLBUKGUxkU5aumKcCaRKhoV0RDIiKsXd0nGLOS0pr5jiyhAjTaWM45zS5WpZ0SG477274L87F5Pe-C7kZ6MmnCGuFJY8Uw89ZYOPMbhK70K9NeGgMdLHuPQxLo2wPsaV8aLHo3G6bpPLwlT7bP2T_-fven4Tkw8nNxGCcSRL-gPqY3Pv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540599175</pqid></control><display><type>article</type><title>A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Liu, Yi ; Chen, Yi-Hsin ; Sawkar, Nandan ; Xu, Nan ; Gaikwad, Surendra ; Seaton, Philip ; Singh, Kanwerdip</creator><creatorcontrib>Liu, Yi ; Chen, Yi-Hsin ; Sawkar, Nandan ; Xu, Nan ; Gaikwad, Surendra ; Seaton, Philip ; Singh, Kanwerdip</creatorcontrib><description>An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine design. In this work, the mechanical properties important for TMF assessment and modeling of a silicon (Si)- and molybdenum (Mo)-containing ductile cast iron used for exhaust manifold have been evaluated. Tensile, creep, isothermal low cycle fatigue (LCF), and TMF tests have been conducted. Parameters for material modeling, such as the viscoplastic constitutive model and the Neu-Sehitoglu TMF damage model, have been calibrated, validated, and used to evaluate the TMF life of the exhaust manifold. A transient temperature profile created from computational fluid dynamics (CFD) simulation and correlated to thermal survey under exhaust manifold durability (EMD) dynamometer test is used in stress/strain analysis during a thermal cycle. TMF damage is evaluated using the Neu-Sehitoglu TMF model. Although the ferrite-based cast iron does not fully satisfy the requirements of the Neu-Sehitoglu TMF model due to the intergranular embrittlement at 400°C, low ductility at low temperatures, and phase transformation at 820°C-850°C, it is found that the TMF predictions are correlated well to the EMD dynamometer tests. An additional analysis is suggested to address the 400°C intergranular embrittlement.</description><identifier>ISSN: 1946-3979</identifier><identifier>ISSN: 1946-3987</identifier><identifier>EISSN: 1946-3987</identifier><identifier>DOI: 10.4271/2018-01-1215</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Cast iron ; Computational fluid dynamics ; Constitutive models ; Creep (materials) ; Damage assessment ; Ductile cast iron ; Engine ; Engine design ; Evaluation ; Exhaust emissions ; Exhaust manifold ; Fatigue ; Fatigue tests ; Fluid dynamics ; Hydrodynamics ; Low cycle fatigue ; Manifolds ; Mathematical models ; Mechanical properties ; Mechanical property ; Modeling ; Molybdenum ; Nodular iron ; Sehitoglu model ; Silicon ; Strain ; Strain analysis ; Temperature profiles ; Thermal expansion ; Thermomechanical analysis ; Thermomechanical fatigue ; TMF ; Two-layer model</subject><ispartof>SAE International journal of materials and manufacturing, 2018-01, Vol.11 (4), p.517-528, Article 2018-01-1215</ispartof><rights>Copyright © 2018 FCA US LLC</rights><rights>2018 FCA US LLC; Published by SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-99c127e7c3d45460984167e27426f95ebe5c153835f4959a2a7af9ae5533bdbf3</citedby><cites>FETCH-LOGICAL-c464t-99c127e7c3d45460984167e27426f95ebe5c153835f4959a2a7af9ae5533bdbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26645078$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26645078$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Yi-Hsin</creatorcontrib><creatorcontrib>Sawkar, Nandan</creatorcontrib><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Gaikwad, Surendra</creatorcontrib><creatorcontrib>Seaton, Philip</creatorcontrib><creatorcontrib>Singh, Kanwerdip</creatorcontrib><title>A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold</title><title>SAE International journal of materials and manufacturing</title><description>An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine design. In this work, the mechanical properties important for TMF assessment and modeling of a silicon (Si)- and molybdenum (Mo)-containing ductile cast iron used for exhaust manifold have been evaluated. Tensile, creep, isothermal low cycle fatigue (LCF), and TMF tests have been conducted. Parameters for material modeling, such as the viscoplastic constitutive model and the Neu-Sehitoglu TMF damage model, have been calibrated, validated, and used to evaluate the TMF life of the exhaust manifold. A transient temperature profile created from computational fluid dynamics (CFD) simulation and correlated to thermal survey under exhaust manifold durability (EMD) dynamometer test is used in stress/strain analysis during a thermal cycle. TMF damage is evaluated using the Neu-Sehitoglu TMF model. Although the ferrite-based cast iron does not fully satisfy the requirements of the Neu-Sehitoglu TMF model due to the intergranular embrittlement at 400°C, low ductility at low temperatures, and phase transformation at 820°C-850°C, it is found that the TMF predictions are correlated well to the EMD dynamometer tests. An additional analysis is suggested to address the 400°C intergranular embrittlement.</description><subject>Cast iron</subject><subject>Computational fluid dynamics</subject><subject>Constitutive models</subject><subject>Creep (materials)</subject><subject>Damage assessment</subject><subject>Ductile cast iron</subject><subject>Engine</subject><subject>Engine design</subject><subject>Evaluation</subject><subject>Exhaust emissions</subject><subject>Exhaust manifold</subject><subject>Fatigue</subject><subject>Fatigue tests</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Low cycle fatigue</subject><subject>Manifolds</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanical property</subject><subject>Modeling</subject><subject>Molybdenum</subject><subject>Nodular iron</subject><subject>Sehitoglu model</subject><subject>Silicon</subject><subject>Strain</subject><subject>Strain analysis</subject><subject>Temperature profiles</subject><subject>Thermal expansion</subject><subject>Thermomechanical analysis</subject><subject>Thermomechanical fatigue</subject><subject>TMF</subject><subject>Two-layer model</subject><issn>1946-3979</issn><issn>1946-3987</issn><issn>1946-3987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkEtLAzEURoMoWKs7t0LAraN5Z7IstdVixU1dhzTN2CnTSU0y0P57U0Yqru6Dcw-XD4BbjB4ZkfiJIFwWCBeYYH4GBlgxUVBVyvNTL9UluIpxg5CQiJIBeBvBxdqFrd86uzZtbU0DpybVX52Do9Y0h1hH6Fto4HNnU904ODYxwVnIu8l-bbo8vOe7yjera3BRmSa6m986BJ_TyWL8Wsw_Xmbj0bywTLBUKGUxkU5aumKcCaRKhoV0RDIiKsXd0nGLOS0pr5jiyhAjTaWM45zS5WpZ0SG477274L87F5Pe-C7kZ6MmnCGuFJY8Uw89ZYOPMbhK70K9NeGgMdLHuPQxLo2wPsaV8aLHo3G6bpPLwlT7bP2T_-fven4Tkw8nNxGCcSRL-gPqY3Pv</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Liu, Yi</creator><creator>Chen, Yi-Hsin</creator><creator>Sawkar, Nandan</creator><creator>Xu, Nan</creator><creator>Gaikwad, Surendra</creator><creator>Seaton, Philip</creator><creator>Singh, Kanwerdip</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180101</creationdate><title>A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold</title><author>Liu, Yi ; Chen, Yi-Hsin ; Sawkar, Nandan ; Xu, Nan ; Gaikwad, Surendra ; Seaton, Philip ; Singh, Kanwerdip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-99c127e7c3d45460984167e27426f95ebe5c153835f4959a2a7af9ae5533bdbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cast iron</topic><topic>Computational fluid dynamics</topic><topic>Constitutive models</topic><topic>Creep (materials)</topic><topic>Damage assessment</topic><topic>Ductile cast iron</topic><topic>Engine</topic><topic>Engine design</topic><topic>Evaluation</topic><topic>Exhaust emissions</topic><topic>Exhaust manifold</topic><topic>Fatigue</topic><topic>Fatigue tests</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Low cycle fatigue</topic><topic>Manifolds</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanical property</topic><topic>Modeling</topic><topic>Molybdenum</topic><topic>Nodular iron</topic><topic>Sehitoglu model</topic><topic>Silicon</topic><topic>Strain</topic><topic>Strain analysis</topic><topic>Temperature profiles</topic><topic>Thermal expansion</topic><topic>Thermomechanical analysis</topic><topic>Thermomechanical fatigue</topic><topic>TMF</topic><topic>Two-layer model</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Yi-Hsin</creatorcontrib><creatorcontrib>Sawkar, Nandan</creatorcontrib><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Gaikwad, Surendra</creatorcontrib><creatorcontrib>Seaton, Philip</creatorcontrib><creatorcontrib>Singh, Kanwerdip</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SAE International journal of materials and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yi</au><au>Chen, Yi-Hsin</au><au>Sawkar, Nandan</au><au>Xu, Nan</au><au>Gaikwad, Surendra</au><au>Seaton, Philip</au><au>Singh, Kanwerdip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold</atitle><jtitle>SAE International journal of materials and manufacturing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>517</spage><epage>528</epage><pages>517-528</pages><artnum>2018-01-1215</artnum><issn>1946-3979</issn><issn>1946-3987</issn><eissn>1946-3987</eissn><abstract>An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine design. In this work, the mechanical properties important for TMF assessment and modeling of a silicon (Si)- and molybdenum (Mo)-containing ductile cast iron used for exhaust manifold have been evaluated. Tensile, creep, isothermal low cycle fatigue (LCF), and TMF tests have been conducted. Parameters for material modeling, such as the viscoplastic constitutive model and the Neu-Sehitoglu TMF damage model, have been calibrated, validated, and used to evaluate the TMF life of the exhaust manifold. A transient temperature profile created from computational fluid dynamics (CFD) simulation and correlated to thermal survey under exhaust manifold durability (EMD) dynamometer test is used in stress/strain analysis during a thermal cycle. TMF damage is evaluated using the Neu-Sehitoglu TMF model. Although the ferrite-based cast iron does not fully satisfy the requirements of the Neu-Sehitoglu TMF model due to the intergranular embrittlement at 400°C, low ductility at low temperatures, and phase transformation at 820°C-850°C, it is found that the TMF predictions are correlated well to the EMD dynamometer tests. An additional analysis is suggested to address the 400°C intergranular embrittlement.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2018-01-1215</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1946-3979
ispartof SAE International journal of materials and manufacturing, 2018-01, Vol.11 (4), p.517-528, Article 2018-01-1215
issn 1946-3979
1946-3987
1946-3987
language eng
recordid cdi_proquest_journals_2540599175
source JSTOR Archive Collection A-Z Listing
subjects Cast iron
Computational fluid dynamics
Constitutive models
Creep (materials)
Damage assessment
Ductile cast iron
Engine
Engine design
Evaluation
Exhaust emissions
Exhaust manifold
Fatigue
Fatigue tests
Fluid dynamics
Hydrodynamics
Low cycle fatigue
Manifolds
Mathematical models
Mechanical properties
Mechanical property
Modeling
Molybdenum
Nodular iron
Sehitoglu model
Silicon
Strain
Strain analysis
Temperature profiles
Thermal expansion
Thermomechanical analysis
Thermomechanical fatigue
TMF
Two-layer model
title A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Thermomechanical%20Fatigue%20Analysis%20on%20a%20Ductile%20Cast%20Iron%20Exhaust%20Manifold&rft.jtitle=SAE%20International%20journal%20of%20materials%20and%20manufacturing&rft.au=Liu,%20Yi&rft.date=2018-01-01&rft.volume=11&rft.issue=4&rft.spage=517&rft.epage=528&rft.pages=517-528&rft.artnum=2018-01-1215&rft.issn=1946-3979&rft.eissn=1946-3987&rft_id=info:doi/10.4271/2018-01-1215&rft_dat=%3Cjstor_proqu%3E26645078%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540599175&rft_id=info:pmid/&rft_jstor_id=26645078&rfr_iscdi=true