A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold
An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine desi...
Gespeichert in:
Veröffentlicht in: | SAE International journal of materials and manufacturing 2018-01, Vol.11 (4), p.517-528, Article 2018-01-1215 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 528 |
---|---|
container_issue | 4 |
container_start_page | 517 |
container_title | SAE International journal of materials and manufacturing |
container_volume | 11 |
creator | Liu, Yi Chen, Yi-Hsin Sawkar, Nandan Xu, Nan Gaikwad, Surendra Seaton, Philip Singh, Kanwerdip |
description | An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine design. In this work, the mechanical properties important for TMF assessment and modeling of a silicon (Si)- and molybdenum (Mo)-containing ductile cast iron used for exhaust manifold have been evaluated. Tensile, creep, isothermal low cycle fatigue (LCF), and TMF tests have been conducted. Parameters for material modeling, such as the viscoplastic constitutive model and the Neu-Sehitoglu TMF damage model, have been calibrated, validated, and used to evaluate the TMF life of the exhaust manifold. A transient temperature profile created from computational fluid dynamics (CFD) simulation and correlated to thermal survey under exhaust manifold durability (EMD) dynamometer test is used in stress/strain analysis during a thermal cycle. TMF damage is evaluated using the Neu-Sehitoglu TMF model.
Although the ferrite-based cast iron does not fully satisfy the requirements of the Neu-Sehitoglu TMF model due to the intergranular embrittlement at 400°C, low ductility at low temperatures, and phase transformation at 820°C-850°C, it is found that the TMF predictions are correlated well to the EMD dynamometer tests. An additional analysis is suggested to address the 400°C intergranular embrittlement. |
doi_str_mv | 10.4271/2018-01-1215 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2540599175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26645078</jstor_id><sourcerecordid>26645078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-99c127e7c3d45460984167e27426f95ebe5c153835f4959a2a7af9ae5533bdbf3</originalsourceid><addsrcrecordid>eNpVkEtLAzEURoMoWKs7t0LAraN5Z7IstdVixU1dhzTN2CnTSU0y0P57U0Yqru6Dcw-XD4BbjB4ZkfiJIFwWCBeYYH4GBlgxUVBVyvNTL9UluIpxg5CQiJIBeBvBxdqFrd86uzZtbU0DpybVX52Do9Y0h1hH6Fto4HNnU904ODYxwVnIu8l-bbo8vOe7yjera3BRmSa6m986BJ_TyWL8Wsw_Xmbj0bywTLBUKGUxkU5aumKcCaRKhoV0RDIiKsXd0nGLOS0pr5jiyhAjTaWM45zS5WpZ0SG477274L87F5Pe-C7kZ6MmnCGuFJY8Uw89ZYOPMbhK70K9NeGgMdLHuPQxLo2wPsaV8aLHo3G6bpPLwlT7bP2T_-fven4Tkw8nNxGCcSRL-gPqY3Pv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540599175</pqid></control><display><type>article</type><title>A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Liu, Yi ; Chen, Yi-Hsin ; Sawkar, Nandan ; Xu, Nan ; Gaikwad, Surendra ; Seaton, Philip ; Singh, Kanwerdip</creator><creatorcontrib>Liu, Yi ; Chen, Yi-Hsin ; Sawkar, Nandan ; Xu, Nan ; Gaikwad, Surendra ; Seaton, Philip ; Singh, Kanwerdip</creatorcontrib><description>An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine design. In this work, the mechanical properties important for TMF assessment and modeling of a silicon (Si)- and molybdenum (Mo)-containing ductile cast iron used for exhaust manifold have been evaluated. Tensile, creep, isothermal low cycle fatigue (LCF), and TMF tests have been conducted. Parameters for material modeling, such as the viscoplastic constitutive model and the Neu-Sehitoglu TMF damage model, have been calibrated, validated, and used to evaluate the TMF life of the exhaust manifold. A transient temperature profile created from computational fluid dynamics (CFD) simulation and correlated to thermal survey under exhaust manifold durability (EMD) dynamometer test is used in stress/strain analysis during a thermal cycle. TMF damage is evaluated using the Neu-Sehitoglu TMF model.
Although the ferrite-based cast iron does not fully satisfy the requirements of the Neu-Sehitoglu TMF model due to the intergranular embrittlement at 400°C, low ductility at low temperatures, and phase transformation at 820°C-850°C, it is found that the TMF predictions are correlated well to the EMD dynamometer tests. An additional analysis is suggested to address the 400°C intergranular embrittlement.</description><identifier>ISSN: 1946-3979</identifier><identifier>ISSN: 1946-3987</identifier><identifier>EISSN: 1946-3987</identifier><identifier>DOI: 10.4271/2018-01-1215</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Cast iron ; Computational fluid dynamics ; Constitutive models ; Creep (materials) ; Damage assessment ; Ductile cast iron ; Engine ; Engine design ; Evaluation ; Exhaust emissions ; Exhaust manifold ; Fatigue ; Fatigue tests ; Fluid dynamics ; Hydrodynamics ; Low cycle fatigue ; Manifolds ; Mathematical models ; Mechanical properties ; Mechanical property ; Modeling ; Molybdenum ; Nodular iron ; Sehitoglu model ; Silicon ; Strain ; Strain analysis ; Temperature profiles ; Thermal expansion ; Thermomechanical analysis ; Thermomechanical fatigue ; TMF ; Two-layer model</subject><ispartof>SAE International journal of materials and manufacturing, 2018-01, Vol.11 (4), p.517-528, Article 2018-01-1215</ispartof><rights>Copyright © 2018 FCA US LLC</rights><rights>2018 FCA US LLC; Published by SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-99c127e7c3d45460984167e27426f95ebe5c153835f4959a2a7af9ae5533bdbf3</citedby><cites>FETCH-LOGICAL-c464t-99c127e7c3d45460984167e27426f95ebe5c153835f4959a2a7af9ae5533bdbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26645078$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26645078$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Yi-Hsin</creatorcontrib><creatorcontrib>Sawkar, Nandan</creatorcontrib><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Gaikwad, Surendra</creatorcontrib><creatorcontrib>Seaton, Philip</creatorcontrib><creatorcontrib>Singh, Kanwerdip</creatorcontrib><title>A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold</title><title>SAE International journal of materials and manufacturing</title><description>An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine design. In this work, the mechanical properties important for TMF assessment and modeling of a silicon (Si)- and molybdenum (Mo)-containing ductile cast iron used for exhaust manifold have been evaluated. Tensile, creep, isothermal low cycle fatigue (LCF), and TMF tests have been conducted. Parameters for material modeling, such as the viscoplastic constitutive model and the Neu-Sehitoglu TMF damage model, have been calibrated, validated, and used to evaluate the TMF life of the exhaust manifold. A transient temperature profile created from computational fluid dynamics (CFD) simulation and correlated to thermal survey under exhaust manifold durability (EMD) dynamometer test is used in stress/strain analysis during a thermal cycle. TMF damage is evaluated using the Neu-Sehitoglu TMF model.
Although the ferrite-based cast iron does not fully satisfy the requirements of the Neu-Sehitoglu TMF model due to the intergranular embrittlement at 400°C, low ductility at low temperatures, and phase transformation at 820°C-850°C, it is found that the TMF predictions are correlated well to the EMD dynamometer tests. An additional analysis is suggested to address the 400°C intergranular embrittlement.</description><subject>Cast iron</subject><subject>Computational fluid dynamics</subject><subject>Constitutive models</subject><subject>Creep (materials)</subject><subject>Damage assessment</subject><subject>Ductile cast iron</subject><subject>Engine</subject><subject>Engine design</subject><subject>Evaluation</subject><subject>Exhaust emissions</subject><subject>Exhaust manifold</subject><subject>Fatigue</subject><subject>Fatigue tests</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Low cycle fatigue</subject><subject>Manifolds</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanical property</subject><subject>Modeling</subject><subject>Molybdenum</subject><subject>Nodular iron</subject><subject>Sehitoglu model</subject><subject>Silicon</subject><subject>Strain</subject><subject>Strain analysis</subject><subject>Temperature profiles</subject><subject>Thermal expansion</subject><subject>Thermomechanical analysis</subject><subject>Thermomechanical fatigue</subject><subject>TMF</subject><subject>Two-layer model</subject><issn>1946-3979</issn><issn>1946-3987</issn><issn>1946-3987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkEtLAzEURoMoWKs7t0LAraN5Z7IstdVixU1dhzTN2CnTSU0y0P57U0Yqru6Dcw-XD4BbjB4ZkfiJIFwWCBeYYH4GBlgxUVBVyvNTL9UluIpxg5CQiJIBeBvBxdqFrd86uzZtbU0DpybVX52Do9Y0h1hH6Fto4HNnU904ODYxwVnIu8l-bbo8vOe7yjera3BRmSa6m986BJ_TyWL8Wsw_Xmbj0bywTLBUKGUxkU5aumKcCaRKhoV0RDIiKsXd0nGLOS0pr5jiyhAjTaWM45zS5WpZ0SG477274L87F5Pe-C7kZ6MmnCGuFJY8Uw89ZYOPMbhK70K9NeGgMdLHuPQxLo2wPsaV8aLHo3G6bpPLwlT7bP2T_-fven4Tkw8nNxGCcSRL-gPqY3Pv</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Liu, Yi</creator><creator>Chen, Yi-Hsin</creator><creator>Sawkar, Nandan</creator><creator>Xu, Nan</creator><creator>Gaikwad, Surendra</creator><creator>Seaton, Philip</creator><creator>Singh, Kanwerdip</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180101</creationdate><title>A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold</title><author>Liu, Yi ; Chen, Yi-Hsin ; Sawkar, Nandan ; Xu, Nan ; Gaikwad, Surendra ; Seaton, Philip ; Singh, Kanwerdip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-99c127e7c3d45460984167e27426f95ebe5c153835f4959a2a7af9ae5533bdbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cast iron</topic><topic>Computational fluid dynamics</topic><topic>Constitutive models</topic><topic>Creep (materials)</topic><topic>Damage assessment</topic><topic>Ductile cast iron</topic><topic>Engine</topic><topic>Engine design</topic><topic>Evaluation</topic><topic>Exhaust emissions</topic><topic>Exhaust manifold</topic><topic>Fatigue</topic><topic>Fatigue tests</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Low cycle fatigue</topic><topic>Manifolds</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanical property</topic><topic>Modeling</topic><topic>Molybdenum</topic><topic>Nodular iron</topic><topic>Sehitoglu model</topic><topic>Silicon</topic><topic>Strain</topic><topic>Strain analysis</topic><topic>Temperature profiles</topic><topic>Thermal expansion</topic><topic>Thermomechanical analysis</topic><topic>Thermomechanical fatigue</topic><topic>TMF</topic><topic>Two-layer model</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Yi-Hsin</creatorcontrib><creatorcontrib>Sawkar, Nandan</creatorcontrib><creatorcontrib>Xu, Nan</creatorcontrib><creatorcontrib>Gaikwad, Surendra</creatorcontrib><creatorcontrib>Seaton, Philip</creatorcontrib><creatorcontrib>Singh, Kanwerdip</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SAE International journal of materials and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yi</au><au>Chen, Yi-Hsin</au><au>Sawkar, Nandan</au><au>Xu, Nan</au><au>Gaikwad, Surendra</au><au>Seaton, Philip</au><au>Singh, Kanwerdip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold</atitle><jtitle>SAE International journal of materials and manufacturing</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>517</spage><epage>528</epage><pages>517-528</pages><artnum>2018-01-1215</artnum><issn>1946-3979</issn><issn>1946-3987</issn><eissn>1946-3987</eissn><abstract>An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine design. In this work, the mechanical properties important for TMF assessment and modeling of a silicon (Si)- and molybdenum (Mo)-containing ductile cast iron used for exhaust manifold have been evaluated. Tensile, creep, isothermal low cycle fatigue (LCF), and TMF tests have been conducted. Parameters for material modeling, such as the viscoplastic constitutive model and the Neu-Sehitoglu TMF damage model, have been calibrated, validated, and used to evaluate the TMF life of the exhaust manifold. A transient temperature profile created from computational fluid dynamics (CFD) simulation and correlated to thermal survey under exhaust manifold durability (EMD) dynamometer test is used in stress/strain analysis during a thermal cycle. TMF damage is evaluated using the Neu-Sehitoglu TMF model.
Although the ferrite-based cast iron does not fully satisfy the requirements of the Neu-Sehitoglu TMF model due to the intergranular embrittlement at 400°C, low ductility at low temperatures, and phase transformation at 820°C-850°C, it is found that the TMF predictions are correlated well to the EMD dynamometer tests. An additional analysis is suggested to address the 400°C intergranular embrittlement.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2018-01-1215</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1946-3979 |
ispartof | SAE International journal of materials and manufacturing, 2018-01, Vol.11 (4), p.517-528, Article 2018-01-1215 |
issn | 1946-3979 1946-3987 1946-3987 |
language | eng |
recordid | cdi_proquest_journals_2540599175 |
source | JSTOR Archive Collection A-Z Listing |
subjects | Cast iron Computational fluid dynamics Constitutive models Creep (materials) Damage assessment Ductile cast iron Engine Engine design Evaluation Exhaust emissions Exhaust manifold Fatigue Fatigue tests Fluid dynamics Hydrodynamics Low cycle fatigue Manifolds Mathematical models Mechanical properties Mechanical property Modeling Molybdenum Nodular iron Sehitoglu model Silicon Strain Strain analysis Temperature profiles Thermal expansion Thermomechanical analysis Thermomechanical fatigue TMF Two-layer model |
title | A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Thermomechanical%20Fatigue%20Analysis%20on%20a%20Ductile%20Cast%20Iron%20Exhaust%20Manifold&rft.jtitle=SAE%20International%20journal%20of%20materials%20and%20manufacturing&rft.au=Liu,%20Yi&rft.date=2018-01-01&rft.volume=11&rft.issue=4&rft.spage=517&rft.epage=528&rft.pages=517-528&rft.artnum=2018-01-1215&rft.issn=1946-3979&rft.eissn=1946-3987&rft_id=info:doi/10.4271/2018-01-1215&rft_dat=%3Cjstor_proqu%3E26645078%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540599175&rft_id=info:pmid/&rft_jstor_id=26645078&rfr_iscdi=true |