HC Traps for Gasoline and Ethanol Applications

In-line hydrocarbon (HC) traps are not widely used to reduce HC emissions due to their limited durability, high platinum group metal (PGM) concentrations, complicated processing, and insufficient hydrocarbon (HC) retention temperatures required for efficient conversion by the three-way catalyst comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE International journal of fuels and lubricants 2013, Vol.6 (2), p.430-449, Article 2013-01-1297
Hauptverfasser: Nunan, John, Lupescu, Jason, Denison, Gregory, Ball, Douglas, Moser, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue 2
container_start_page 430
container_title SAE International journal of fuels and lubricants
container_volume 6
creator Nunan, John
Lupescu, Jason
Denison, Gregory
Ball, Douglas
Moser, David
description In-line hydrocarbon (HC) traps are not widely used to reduce HC emissions due to their limited durability, high platinum group metal (PGM) concentrations, complicated processing, and insufficient hydrocarbon (HC) retention temperatures required for efficient conversion by the three-way catalyst component. New trapping materials and system architectures were developed utilizing an engine dynamometer test equipped with dual Fourier Transform Infrared (FTIR) spectrometers for tracking the adsorption and desorption of various HC species during the light-off period. Parallel laboratory reactor studies were conducted which show that the new HC trap formulations extend the traditional adsorption processes (i.e., based on physic-sorption and/or adsorption at acid sites) to chemical reaction mechanisms resulting in oligomerized, dehydro-cyclization, and partial coke formation. This results in the initially adsorbed hydrocarbons being retained in the HC trap to sufficiently high temperatures for effective combustion via the three-way-catalyst (TWC) overlayer. Vehicle testing using a 2008 SULEV Ford Focus with E85 fuel and a 2007 BIN-8 1.6L GTDI Mini Cooper with gasoline confirmed an improved design. Additional vehicle work also showed that the HC trap performance may be enhanced with air/fuel calibration during the HC desorption phase. These new trap formulations not only improve HC storage and conversion efficiency, but substantially decrease the PGM requirement compared to previous designs.
doi_str_mv 10.4271/2013-01-1297
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2540577693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26273017</jstor_id><sourcerecordid>26273017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-11589b4e7e3422d3ab35b4df4deeedb96d7a880c808452559cca47c8ea2d72483</originalsourceid><addsrcrecordid>eNpVkM9LwzAUgIMoOKc3r0LBq5n52STHUeYmDLzMc0iTFDtqU5Ps4H9vS2Xi6b3Dx_d4HwD3GK0YEfiZIEwhwhATJS7AAitWQqpKdHneObkGNykdESoFongBVruqOEQzpKIJsdiaFLq294XpXbHJH6YPXbEehq61JrehT7fgqjFd8ne_cwneXzaHagf3b9vXar2HlhGeIcZcqpp54SkjxFFTU14z1zDnvXe1Kp0wUiIrkWSccK6sNUxY6Q1xgjBJl-Bx9g4xfJ18yvoYTrEfT2rCGeJClIqO1NNM2RhSir7RQ2w_TfzWGOmpiJ6KaIT1VGTE4Ywn43XbZz8Kp69M9yf_zz_M_DHlEM9uUhJBERb0B34_ae0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540577693</pqid></control><display><type>article</type><title>HC Traps for Gasoline and Ethanol Applications</title><source>Jstor Complete Legacy</source><creator>Nunan, John ; Lupescu, Jason ; Denison, Gregory ; Ball, Douglas ; Moser, David</creator><creatorcontrib>Nunan, John ; Lupescu, Jason ; Denison, Gregory ; Ball, Douglas ; Moser, David</creatorcontrib><description>In-line hydrocarbon (HC) traps are not widely used to reduce HC emissions due to their limited durability, high platinum group metal (PGM) concentrations, complicated processing, and insufficient hydrocarbon (HC) retention temperatures required for efficient conversion by the three-way catalyst component. New trapping materials and system architectures were developed utilizing an engine dynamometer test equipped with dual Fourier Transform Infrared (FTIR) spectrometers for tracking the adsorption and desorption of various HC species during the light-off period. Parallel laboratory reactor studies were conducted which show that the new HC trap formulations extend the traditional adsorption processes (i.e., based on physic-sorption and/or adsorption at acid sites) to chemical reaction mechanisms resulting in oligomerized, dehydro-cyclization, and partial coke formation. This results in the initially adsorbed hydrocarbons being retained in the HC trap to sufficiently high temperatures for effective combustion via the three-way-catalyst (TWC) overlayer. Vehicle testing using a 2008 SULEV Ford Focus with E85 fuel and a 2007 BIN-8 1.6L GTDI Mini Cooper with gasoline confirmed an improved design. Additional vehicle work also showed that the HC trap performance may be enhanced with air/fuel calibration during the HC desorption phase. These new trap formulations not only improve HC storage and conversion efficiency, but substantially decrease the PGM requirement compared to previous designs.</description><identifier>ISSN: 1946-3952</identifier><identifier>ISSN: 1946-3960</identifier><identifier>EISSN: 1946-3960</identifier><identifier>DOI: 10.4271/2013-01-1297</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Adsorption ; Catalysts ; Chemical reactions ; Design improvements ; Desorption ; Dynamometers ; Engines ; Ethanol ; Ethanol fuels ; Fourier transforms ; Gasoline ; High temperature ; Hydrocarbons ; Infrared spectrometers ; Infrared tracking ; Inlets ; Metal concentrations ; Nuclear fuels ; Oligomerization ; Platinum metals ; Reaction mechanisms ; Spectrometers ; Zeolites</subject><ispartof>SAE International journal of fuels and lubricants, 2013, Vol.6 (2), p.430-449, Article 2013-01-1297</ispartof><rights>Copyright © 2013 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-11589b4e7e3422d3ab35b4df4deeedb96d7a880c808452559cca47c8ea2d72483</citedby><cites>FETCH-LOGICAL-c425t-11589b4e7e3422d3ab35b4df4deeedb96d7a880c808452559cca47c8ea2d72483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26273017$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26273017$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,4009,27902,27903,27904,57995,58228</link.rule.ids></links><search><creatorcontrib>Nunan, John</creatorcontrib><creatorcontrib>Lupescu, Jason</creatorcontrib><creatorcontrib>Denison, Gregory</creatorcontrib><creatorcontrib>Ball, Douglas</creatorcontrib><creatorcontrib>Moser, David</creatorcontrib><title>HC Traps for Gasoline and Ethanol Applications</title><title>SAE International journal of fuels and lubricants</title><description>In-line hydrocarbon (HC) traps are not widely used to reduce HC emissions due to their limited durability, high platinum group metal (PGM) concentrations, complicated processing, and insufficient hydrocarbon (HC) retention temperatures required for efficient conversion by the three-way catalyst component. New trapping materials and system architectures were developed utilizing an engine dynamometer test equipped with dual Fourier Transform Infrared (FTIR) spectrometers for tracking the adsorption and desorption of various HC species during the light-off period. Parallel laboratory reactor studies were conducted which show that the new HC trap formulations extend the traditional adsorption processes (i.e., based on physic-sorption and/or adsorption at acid sites) to chemical reaction mechanisms resulting in oligomerized, dehydro-cyclization, and partial coke formation. This results in the initially adsorbed hydrocarbons being retained in the HC trap to sufficiently high temperatures for effective combustion via the three-way-catalyst (TWC) overlayer. Vehicle testing using a 2008 SULEV Ford Focus with E85 fuel and a 2007 BIN-8 1.6L GTDI Mini Cooper with gasoline confirmed an improved design. Additional vehicle work also showed that the HC trap performance may be enhanced with air/fuel calibration during the HC desorption phase. These new trap formulations not only improve HC storage and conversion efficiency, but substantially decrease the PGM requirement compared to previous designs.</description><subject>Adsorption</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Design improvements</subject><subject>Desorption</subject><subject>Dynamometers</subject><subject>Engines</subject><subject>Ethanol</subject><subject>Ethanol fuels</subject><subject>Fourier transforms</subject><subject>Gasoline</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Infrared spectrometers</subject><subject>Infrared tracking</subject><subject>Inlets</subject><subject>Metal concentrations</subject><subject>Nuclear fuels</subject><subject>Oligomerization</subject><subject>Platinum metals</subject><subject>Reaction mechanisms</subject><subject>Spectrometers</subject><subject>Zeolites</subject><issn>1946-3952</issn><issn>1946-3960</issn><issn>1946-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkM9LwzAUgIMoOKc3r0LBq5n52STHUeYmDLzMc0iTFDtqU5Ps4H9vS2Xi6b3Dx_d4HwD3GK0YEfiZIEwhwhATJS7AAitWQqpKdHneObkGNykdESoFongBVruqOEQzpKIJsdiaFLq294XpXbHJH6YPXbEehq61JrehT7fgqjFd8ne_cwneXzaHagf3b9vXar2HlhGeIcZcqpp54SkjxFFTU14z1zDnvXe1Kp0wUiIrkWSccK6sNUxY6Q1xgjBJl-Bx9g4xfJ18yvoYTrEfT2rCGeJClIqO1NNM2RhSir7RQ2w_TfzWGOmpiJ6KaIT1VGTE4Ywn43XbZz8Kp69M9yf_zz_M_DHlEM9uUhJBERb0B34_ae0</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Nunan, John</creator><creator>Lupescu, Jason</creator><creator>Denison, Gregory</creator><creator>Ball, Douglas</creator><creator>Moser, David</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope></search><sort><creationdate>2013</creationdate><title>HC Traps for Gasoline and Ethanol Applications</title><author>Nunan, John ; Lupescu, Jason ; Denison, Gregory ; Ball, Douglas ; Moser, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-11589b4e7e3422d3ab35b4df4deeedb96d7a880c808452559cca47c8ea2d72483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Design improvements</topic><topic>Desorption</topic><topic>Dynamometers</topic><topic>Engines</topic><topic>Ethanol</topic><topic>Ethanol fuels</topic><topic>Fourier transforms</topic><topic>Gasoline</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Infrared spectrometers</topic><topic>Infrared tracking</topic><topic>Inlets</topic><topic>Metal concentrations</topic><topic>Nuclear fuels</topic><topic>Oligomerization</topic><topic>Platinum metals</topic><topic>Reaction mechanisms</topic><topic>Spectrometers</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunan, John</creatorcontrib><creatorcontrib>Lupescu, Jason</creatorcontrib><creatorcontrib>Denison, Gregory</creatorcontrib><creatorcontrib>Ball, Douglas</creatorcontrib><creatorcontrib>Moser, David</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><jtitle>SAE International journal of fuels and lubricants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunan, John</au><au>Lupescu, Jason</au><au>Denison, Gregory</au><au>Ball, Douglas</au><au>Moser, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HC Traps for Gasoline and Ethanol Applications</atitle><jtitle>SAE International journal of fuels and lubricants</jtitle><date>2013</date><risdate>2013</risdate><volume>6</volume><issue>2</issue><spage>430</spage><epage>449</epage><pages>430-449</pages><artnum>2013-01-1297</artnum><issn>1946-3952</issn><issn>1946-3960</issn><eissn>1946-3960</eissn><abstract>In-line hydrocarbon (HC) traps are not widely used to reduce HC emissions due to their limited durability, high platinum group metal (PGM) concentrations, complicated processing, and insufficient hydrocarbon (HC) retention temperatures required for efficient conversion by the three-way catalyst component. New trapping materials and system architectures were developed utilizing an engine dynamometer test equipped with dual Fourier Transform Infrared (FTIR) spectrometers for tracking the adsorption and desorption of various HC species during the light-off period. Parallel laboratory reactor studies were conducted which show that the new HC trap formulations extend the traditional adsorption processes (i.e., based on physic-sorption and/or adsorption at acid sites) to chemical reaction mechanisms resulting in oligomerized, dehydro-cyclization, and partial coke formation. This results in the initially adsorbed hydrocarbons being retained in the HC trap to sufficiently high temperatures for effective combustion via the three-way-catalyst (TWC) overlayer. Vehicle testing using a 2008 SULEV Ford Focus with E85 fuel and a 2007 BIN-8 1.6L GTDI Mini Cooper with gasoline confirmed an improved design. Additional vehicle work also showed that the HC trap performance may be enhanced with air/fuel calibration during the HC desorption phase. These new trap formulations not only improve HC storage and conversion efficiency, but substantially decrease the PGM requirement compared to previous designs.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2013-01-1297</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1946-3952
ispartof SAE International journal of fuels and lubricants, 2013, Vol.6 (2), p.430-449, Article 2013-01-1297
issn 1946-3952
1946-3960
1946-3960
language eng
recordid cdi_proquest_journals_2540577693
source Jstor Complete Legacy
subjects Adsorption
Catalysts
Chemical reactions
Design improvements
Desorption
Dynamometers
Engines
Ethanol
Ethanol fuels
Fourier transforms
Gasoline
High temperature
Hydrocarbons
Infrared spectrometers
Infrared tracking
Inlets
Metal concentrations
Nuclear fuels
Oligomerization
Platinum metals
Reaction mechanisms
Spectrometers
Zeolites
title HC Traps for Gasoline and Ethanol Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HC%20Traps%20for%20Gasoline%20and%20Ethanol%20Applications&rft.jtitle=SAE%20International%20journal%20of%20fuels%20and%20lubricants&rft.au=Nunan,%20John&rft.date=2013&rft.volume=6&rft.issue=2&rft.spage=430&rft.epage=449&rft.pages=430-449&rft.artnum=2013-01-1297&rft.issn=1946-3952&rft.eissn=1946-3960&rft_id=info:doi/10.4271/2013-01-1297&rft_dat=%3Cjstor_proqu%3E26273017%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540577693&rft_id=info:pmid/&rft_jstor_id=26273017&rfr_iscdi=true