Sequential Identification of Engine Subsystems by Optimal Input Design

Complexity and nonlinearity of engines makes precise first principle engine models often difficult to obtain, as for instance for emissions. System identification is a well known possible alternative, successfully used in several automotive applications. In most cases system identification is concer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE International journal of engines 2009-01, Vol.2 (2), p.562-569, Article 2009-24-0132
Hauptverfasser: Hirsch, Markus, del Re, Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 2
container_start_page 562
container_title SAE International journal of engines
container_volume 2
creator Hirsch, Markus
del Re, Luigi
description Complexity and nonlinearity of engines makes precise first principle engine models often difficult to obtain, as for instance for emissions. System identification is a well known possible alternative, successfully used in several automotive applications. In most cases system identification is concerned with the estimation of the unknown parameters of a known set of equations. Unfortunately, for many engine subsystems, there is no sufficiently precise or real time suitable model. This paper presents a sequential algorithm which allows to derive real time suitable models on line by a combination of model structure hypothesis of increasing complexity and an associated optimal input design and selection process. This paper introduces the method and shows its use both for a rather simple and a very difficult engine identification task, a dynamical model of the airpath of a Diesel engine and a dynamical model of nitrogen oxides and particulate matter.
doi_str_mv 10.4271/2009-24-0132
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2540570503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26275444</jstor_id><sourcerecordid>26275444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-57a1563e8c9322e24c9a53da1b6f64d4d110ddeeb185326ceae7a21463310e823</originalsourceid><addsrcrecordid>eNpVkEFLw0AQhRdRsFZvXoWAV6O7s7Ob5ii11UKhh-p52SSTktJuYnZz6L83IVLxNO_w8c3jMXYv-DNCIl6A8zQGjLmQcMEmIkUdyxTx8pylvmY33u851wmXfMKWW_ruyIXKHqJVMYSyym2oahfVZbRwu8pRtO0yf_KBjj7KTtGmCdVxwF3TheiNfLVzt-yqtAdPd793yr6Wi8_5R7zevK_mr-s4R1AhVokVSkua5akEIMA8tUoWVmS61FhgIQQvCqJMzJQEnZOlxIJALaXgNAM5ZY-jt2nrvrcPZl93retfGlDIVcIVlz31NFJ5W3vfUmmatq_cnozgZljKDEsZQDMs1ePxiHtLpnKBeuGwgD38yf_zDyO_96Fuz27QkChElD99jnMJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540570503</pqid></control><display><type>article</type><title>Sequential Identification of Engine Subsystems by Optimal Input Design</title><source>JSTOR</source><creator>Hirsch, Markus ; del Re, Luigi</creator><creatorcontrib>Hirsch, Markus ; del Re, Luigi</creatorcontrib><description>Complexity and nonlinearity of engines makes precise first principle engine models often difficult to obtain, as for instance for emissions. System identification is a well known possible alternative, successfully used in several automotive applications. In most cases system identification is concerned with the estimation of the unknown parameters of a known set of equations. Unfortunately, for many engine subsystems, there is no sufficiently precise or real time suitable model. This paper presents a sequential algorithm which allows to derive real time suitable models on line by a combination of model structure hypothesis of increasing complexity and an associated optimal input design and selection process. This paper introduces the method and shows its use both for a rather simple and a very difficult engine identification task, a dynamical model of the airpath of a Diesel engine and a dynamical model of nitrogen oxides and particulate matter.</description><identifier>ISSN: 1946-3936</identifier><identifier>ISSN: 1946-3944</identifier><identifier>EISSN: 1946-3944</identifier><identifier>DOI: 10.4271/2009-24-0132</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Algorithms ; Automotive engines ; Complexity ; Diesel engines ; Dynamic modeling ; Dynamic models ; Engine design ; Engines ; First principles ; Nitrogen oxides ; Parameter estimation ; Parameter identification ; Parametric models ; Particulate emissions ; Real time ; Subsystems ; System identification</subject><ispartof>SAE International journal of engines, 2009-01, Vol.2 (2), p.562-569, Article 2009-24-0132</ispartof><rights>Copyright © 2009 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-57a1563e8c9322e24c9a53da1b6f64d4d110ddeeb185326ceae7a21463310e823</citedby><cites>FETCH-LOGICAL-c425t-57a1563e8c9322e24c9a53da1b6f64d4d110ddeeb185326ceae7a21463310e823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26275444$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26275444$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27915,27916,58008,58241</link.rule.ids></links><search><creatorcontrib>Hirsch, Markus</creatorcontrib><creatorcontrib>del Re, Luigi</creatorcontrib><title>Sequential Identification of Engine Subsystems by Optimal Input Design</title><title>SAE International journal of engines</title><description>Complexity and nonlinearity of engines makes precise first principle engine models often difficult to obtain, as for instance for emissions. System identification is a well known possible alternative, successfully used in several automotive applications. In most cases system identification is concerned with the estimation of the unknown parameters of a known set of equations. Unfortunately, for many engine subsystems, there is no sufficiently precise or real time suitable model. This paper presents a sequential algorithm which allows to derive real time suitable models on line by a combination of model structure hypothesis of increasing complexity and an associated optimal input design and selection process. This paper introduces the method and shows its use both for a rather simple and a very difficult engine identification task, a dynamical model of the airpath of a Diesel engine and a dynamical model of nitrogen oxides and particulate matter.</description><subject>Algorithms</subject><subject>Automotive engines</subject><subject>Complexity</subject><subject>Diesel engines</subject><subject>Dynamic modeling</subject><subject>Dynamic models</subject><subject>Engine design</subject><subject>Engines</subject><subject>First principles</subject><subject>Nitrogen oxides</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parametric models</subject><subject>Particulate emissions</subject><subject>Real time</subject><subject>Subsystems</subject><subject>System identification</subject><issn>1946-3936</issn><issn>1946-3944</issn><issn>1946-3944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkEFLw0AQhRdRsFZvXoWAV6O7s7Ob5ii11UKhh-p52SSTktJuYnZz6L83IVLxNO_w8c3jMXYv-DNCIl6A8zQGjLmQcMEmIkUdyxTx8pylvmY33u851wmXfMKWW_ruyIXKHqJVMYSyym2oahfVZbRwu8pRtO0yf_KBjj7KTtGmCdVxwF3TheiNfLVzt-yqtAdPd793yr6Wi8_5R7zevK_mr-s4R1AhVokVSkua5akEIMA8tUoWVmS61FhgIQQvCqJMzJQEnZOlxIJALaXgNAM5ZY-jt2nrvrcPZl93retfGlDIVcIVlz31NFJ5W3vfUmmatq_cnozgZljKDEsZQDMs1ePxiHtLpnKBeuGwgD38yf_zDyO_96Fuz27QkChElD99jnMJ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Hirsch, Markus</creator><creator>del Re, Luigi</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090101</creationdate><title>Sequential Identification of Engine Subsystems by Optimal Input Design</title><author>Hirsch, Markus ; del Re, Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-57a1563e8c9322e24c9a53da1b6f64d4d110ddeeb185326ceae7a21463310e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Automotive engines</topic><topic>Complexity</topic><topic>Diesel engines</topic><topic>Dynamic modeling</topic><topic>Dynamic models</topic><topic>Engine design</topic><topic>Engines</topic><topic>First principles</topic><topic>Nitrogen oxides</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parametric models</topic><topic>Particulate emissions</topic><topic>Real time</topic><topic>Subsystems</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirsch, Markus</creatorcontrib><creatorcontrib>del Re, Luigi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>SAE International journal of engines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirsch, Markus</au><au>del Re, Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Identification of Engine Subsystems by Optimal Input Design</atitle><jtitle>SAE International journal of engines</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>2</volume><issue>2</issue><spage>562</spage><epage>569</epage><pages>562-569</pages><artnum>2009-24-0132</artnum><issn>1946-3936</issn><issn>1946-3944</issn><eissn>1946-3944</eissn><abstract>Complexity and nonlinearity of engines makes precise first principle engine models often difficult to obtain, as for instance for emissions. System identification is a well known possible alternative, successfully used in several automotive applications. In most cases system identification is concerned with the estimation of the unknown parameters of a known set of equations. Unfortunately, for many engine subsystems, there is no sufficiently precise or real time suitable model. This paper presents a sequential algorithm which allows to derive real time suitable models on line by a combination of model structure hypothesis of increasing complexity and an associated optimal input design and selection process. This paper introduces the method and shows its use both for a rather simple and a very difficult engine identification task, a dynamical model of the airpath of a Diesel engine and a dynamical model of nitrogen oxides and particulate matter.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2009-24-0132</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1946-3936
ispartof SAE International journal of engines, 2009-01, Vol.2 (2), p.562-569, Article 2009-24-0132
issn 1946-3936
1946-3944
1946-3944
language eng
recordid cdi_proquest_journals_2540570503
source JSTOR
subjects Algorithms
Automotive engines
Complexity
Diesel engines
Dynamic modeling
Dynamic models
Engine design
Engines
First principles
Nitrogen oxides
Parameter estimation
Parameter identification
Parametric models
Particulate emissions
Real time
Subsystems
System identification
title Sequential Identification of Engine Subsystems by Optimal Input Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Identification%20of%20Engine%20Subsystems%20by%20Optimal%20Input%20Design&rft.jtitle=SAE%20International%20journal%20of%20engines&rft.au=Hirsch,%20Markus&rft.date=2009-01-01&rft.volume=2&rft.issue=2&rft.spage=562&rft.epage=569&rft.pages=562-569&rft.artnum=2009-24-0132&rft.issn=1946-3936&rft.eissn=1946-3944&rft_id=info:doi/10.4271/2009-24-0132&rft_dat=%3Cjstor_proqu%3E26275444%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540570503&rft_id=info:pmid/&rft_jstor_id=26275444&rfr_iscdi=true