Sequential Identification of Engine Subsystems by Optimal Input Design
Complexity and nonlinearity of engines makes precise first principle engine models often difficult to obtain, as for instance for emissions. System identification is a well known possible alternative, successfully used in several automotive applications. In most cases system identification is concer...
Gespeichert in:
Veröffentlicht in: | SAE International journal of engines 2009-01, Vol.2 (2), p.562-569, Article 2009-24-0132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 569 |
---|---|
container_issue | 2 |
container_start_page | 562 |
container_title | SAE International journal of engines |
container_volume | 2 |
creator | Hirsch, Markus del Re, Luigi |
description | Complexity and nonlinearity of engines makes precise first principle engine models often difficult to obtain, as for instance for emissions. System identification is a well known possible alternative, successfully used in several automotive applications. In most cases system identification is concerned with the estimation of the unknown parameters of a known set of equations. Unfortunately, for many engine subsystems, there is no sufficiently precise or real time suitable model. This paper presents a sequential algorithm which allows to derive real time suitable models on line by a combination of model structure hypothesis of increasing complexity and an associated optimal input design and selection process. This paper introduces the method and shows its use both for a rather simple and a very difficult engine identification task, a dynamical model of the airpath of a Diesel engine and a dynamical model of nitrogen oxides and particulate matter. |
doi_str_mv | 10.4271/2009-24-0132 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2540570503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26275444</jstor_id><sourcerecordid>26275444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-57a1563e8c9322e24c9a53da1b6f64d4d110ddeeb185326ceae7a21463310e823</originalsourceid><addsrcrecordid>eNpVkEFLw0AQhRdRsFZvXoWAV6O7s7Ob5ii11UKhh-p52SSTktJuYnZz6L83IVLxNO_w8c3jMXYv-DNCIl6A8zQGjLmQcMEmIkUdyxTx8pylvmY33u851wmXfMKWW_ruyIXKHqJVMYSyym2oahfVZbRwu8pRtO0yf_KBjj7KTtGmCdVxwF3TheiNfLVzt-yqtAdPd793yr6Wi8_5R7zevK_mr-s4R1AhVokVSkua5akEIMA8tUoWVmS61FhgIQQvCqJMzJQEnZOlxIJALaXgNAM5ZY-jt2nrvrcPZl93retfGlDIVcIVlz31NFJ5W3vfUmmatq_cnozgZljKDEsZQDMs1ePxiHtLpnKBeuGwgD38yf_zDyO_96Fuz27QkChElD99jnMJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540570503</pqid></control><display><type>article</type><title>Sequential Identification of Engine Subsystems by Optimal Input Design</title><source>JSTOR</source><creator>Hirsch, Markus ; del Re, Luigi</creator><creatorcontrib>Hirsch, Markus ; del Re, Luigi</creatorcontrib><description>Complexity and nonlinearity of engines makes precise first principle engine models often difficult to obtain, as for instance for emissions. System identification is a well known possible alternative, successfully used in several automotive applications. In most cases system identification is concerned with the estimation of the unknown parameters of a known set of equations. Unfortunately, for many engine subsystems, there is no sufficiently precise or real time suitable model. This paper presents a sequential algorithm which allows to derive real time suitable models on line by a combination of model structure hypothesis of increasing complexity and an associated optimal input design and selection process. This paper introduces the method and shows its use both for a rather simple and a very difficult engine identification task, a dynamical model of the airpath of a Diesel engine and a dynamical model of nitrogen oxides and particulate matter.</description><identifier>ISSN: 1946-3936</identifier><identifier>ISSN: 1946-3944</identifier><identifier>EISSN: 1946-3944</identifier><identifier>DOI: 10.4271/2009-24-0132</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Algorithms ; Automotive engines ; Complexity ; Diesel engines ; Dynamic modeling ; Dynamic models ; Engine design ; Engines ; First principles ; Nitrogen oxides ; Parameter estimation ; Parameter identification ; Parametric models ; Particulate emissions ; Real time ; Subsystems ; System identification</subject><ispartof>SAE International journal of engines, 2009-01, Vol.2 (2), p.562-569, Article 2009-24-0132</ispartof><rights>Copyright © 2009 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-57a1563e8c9322e24c9a53da1b6f64d4d110ddeeb185326ceae7a21463310e823</citedby><cites>FETCH-LOGICAL-c425t-57a1563e8c9322e24c9a53da1b6f64d4d110ddeeb185326ceae7a21463310e823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26275444$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26275444$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27915,27916,58008,58241</link.rule.ids></links><search><creatorcontrib>Hirsch, Markus</creatorcontrib><creatorcontrib>del Re, Luigi</creatorcontrib><title>Sequential Identification of Engine Subsystems by Optimal Input Design</title><title>SAE International journal of engines</title><description>Complexity and nonlinearity of engines makes precise first principle engine models often difficult to obtain, as for instance for emissions. System identification is a well known possible alternative, successfully used in several automotive applications. In most cases system identification is concerned with the estimation of the unknown parameters of a known set of equations. Unfortunately, for many engine subsystems, there is no sufficiently precise or real time suitable model. This paper presents a sequential algorithm which allows to derive real time suitable models on line by a combination of model structure hypothesis of increasing complexity and an associated optimal input design and selection process. This paper introduces the method and shows its use both for a rather simple and a very difficult engine identification task, a dynamical model of the airpath of a Diesel engine and a dynamical model of nitrogen oxides and particulate matter.</description><subject>Algorithms</subject><subject>Automotive engines</subject><subject>Complexity</subject><subject>Diesel engines</subject><subject>Dynamic modeling</subject><subject>Dynamic models</subject><subject>Engine design</subject><subject>Engines</subject><subject>First principles</subject><subject>Nitrogen oxides</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parametric models</subject><subject>Particulate emissions</subject><subject>Real time</subject><subject>Subsystems</subject><subject>System identification</subject><issn>1946-3936</issn><issn>1946-3944</issn><issn>1946-3944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkEFLw0AQhRdRsFZvXoWAV6O7s7Ob5ii11UKhh-p52SSTktJuYnZz6L83IVLxNO_w8c3jMXYv-DNCIl6A8zQGjLmQcMEmIkUdyxTx8pylvmY33u851wmXfMKWW_ruyIXKHqJVMYSyym2oahfVZbRwu8pRtO0yf_KBjj7KTtGmCdVxwF3TheiNfLVzt-yqtAdPd793yr6Wi8_5R7zevK_mr-s4R1AhVokVSkua5akEIMA8tUoWVmS61FhgIQQvCqJMzJQEnZOlxIJALaXgNAM5ZY-jt2nrvrcPZl93retfGlDIVcIVlz31NFJ5W3vfUmmatq_cnozgZljKDEsZQDMs1ePxiHtLpnKBeuGwgD38yf_zDyO_96Fuz27QkChElD99jnMJ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Hirsch, Markus</creator><creator>del Re, Luigi</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090101</creationdate><title>Sequential Identification of Engine Subsystems by Optimal Input Design</title><author>Hirsch, Markus ; del Re, Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-57a1563e8c9322e24c9a53da1b6f64d4d110ddeeb185326ceae7a21463310e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Automotive engines</topic><topic>Complexity</topic><topic>Diesel engines</topic><topic>Dynamic modeling</topic><topic>Dynamic models</topic><topic>Engine design</topic><topic>Engines</topic><topic>First principles</topic><topic>Nitrogen oxides</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parametric models</topic><topic>Particulate emissions</topic><topic>Real time</topic><topic>Subsystems</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirsch, Markus</creatorcontrib><creatorcontrib>del Re, Luigi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>SAE International journal of engines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirsch, Markus</au><au>del Re, Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Identification of Engine Subsystems by Optimal Input Design</atitle><jtitle>SAE International journal of engines</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>2</volume><issue>2</issue><spage>562</spage><epage>569</epage><pages>562-569</pages><artnum>2009-24-0132</artnum><issn>1946-3936</issn><issn>1946-3944</issn><eissn>1946-3944</eissn><abstract>Complexity and nonlinearity of engines makes precise first principle engine models often difficult to obtain, as for instance for emissions. System identification is a well known possible alternative, successfully used in several automotive applications. In most cases system identification is concerned with the estimation of the unknown parameters of a known set of equations. Unfortunately, for many engine subsystems, there is no sufficiently precise or real time suitable model. This paper presents a sequential algorithm which allows to derive real time suitable models on line by a combination of model structure hypothesis of increasing complexity and an associated optimal input design and selection process. This paper introduces the method and shows its use both for a rather simple and a very difficult engine identification task, a dynamical model of the airpath of a Diesel engine and a dynamical model of nitrogen oxides and particulate matter.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2009-24-0132</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1946-3936 |
ispartof | SAE International journal of engines, 2009-01, Vol.2 (2), p.562-569, Article 2009-24-0132 |
issn | 1946-3936 1946-3944 1946-3944 |
language | eng |
recordid | cdi_proquest_journals_2540570503 |
source | JSTOR |
subjects | Algorithms Automotive engines Complexity Diesel engines Dynamic modeling Dynamic models Engine design Engines First principles Nitrogen oxides Parameter estimation Parameter identification Parametric models Particulate emissions Real time Subsystems System identification |
title | Sequential Identification of Engine Subsystems by Optimal Input Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Identification%20of%20Engine%20Subsystems%20by%20Optimal%20Input%20Design&rft.jtitle=SAE%20International%20journal%20of%20engines&rft.au=Hirsch,%20Markus&rft.date=2009-01-01&rft.volume=2&rft.issue=2&rft.spage=562&rft.epage=569&rft.pages=562-569&rft.artnum=2009-24-0132&rft.issn=1946-3936&rft.eissn=1946-3944&rft_id=info:doi/10.4271/2009-24-0132&rft_dat=%3Cjstor_proqu%3E26275444%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540570503&rft_id=info:pmid/&rft_jstor_id=26275444&rfr_iscdi=true |