Two-Stage Electro Thermal Supported HC (Hydro Carbon) Conversion

Many diesel engines have to work at load profiles which, due to the low exhaust gas temperatures, necessitate active regeneration procedures to ensure continued engine operation and the reliability of the particulate filter. An active regeneration may be initiated via inner engine measures such as l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE International journal of engines 2011-01, Vol.4 (1), p.508-514, Article 2011-01-0601
Hauptverfasser: Baier, Bettina, Schrewe, Klaus, Maurer, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 1
container_start_page 508
container_title SAE International journal of engines
container_volume 4
creator Baier, Bettina
Schrewe, Klaus
Maurer, Bernd
description Many diesel engines have to work at load profiles which, due to the low exhaust gas temperatures, necessitate active regeneration procedures to ensure continued engine operation and the reliability of the particulate filter. An active regeneration may be initiated via inner engine measures such as late injection. However, due to high maintenance interval and run time requirements for non-road applications the combustion of soot accumulated in the diesel particulate filter (DPF) often is realized via downstream processes. Known methods for this purpose are burner systems, systems based on downstream hydrocarbon injection (HCI) and subsequent hydrocarbon (HC) -conversion due to a catalyst or a combination of both. This paper describes an autarkic system using two-stage electro-thermal supported hydrocarbon conversion. This system is capable to regenerate a DPF within the entire engine operating range and it is less complex than flame burner systems. Compared to the systems that work only with HC-dosing, the described system has the advantage that it is able to regenerate a DPF at low exhaust gas temperatures. It has the additional benefit that it can be used for thermal management of any exhaust aftertreatment system, ensuring early light off even under adverse engine operating conditions such as cold start and prolonged idling. The system is NO ₂ - neutral and does not need an additional operating fluid like a fuel borne catalyst.
doi_str_mv 10.4271/2011-01-0601
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2540568983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26278166</jstor_id><sourcerecordid>26278166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-5fd8c2bdbd018dfdc87643c1db42b9533c30454de8c564aadd1946fc91e3d42f3</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMoWKs3r8KCFwWj-dps9mZZqhUKHlrPIZtktWW7WZNU6X9vykpFeDAD8-PNzAPgEqN7Rgr8QBDGECVxhI_ACJeMQ1oydnzoKT8FZyGsEeIFomgEHpffDi6ierfZtLU6epctP6zfqDZbbPve-WhNNquym9nOpFmlfO2626xy3Zf1YeW6c3DSqDbYi986Bm9P02U1g_PX55dqMoeaYhJh3hihSW1qg7AwjdGi4IxqbGpG6jKnVFPEcmas0DlnShmzv7jRJbbUMNLQMbgefHvvPrc2RLl2W9-llZLkDOVclIIm6m6gtHcheNvI3q82yu8kRnKfkdxnJFFSyijhcMCDsnLVRZsMY3pKtX_m__mrgV-H6PzBm3BSCMw5_QGwgnCl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540568983</pqid></control><display><type>article</type><title>Two-Stage Electro Thermal Supported HC (Hydro Carbon) Conversion</title><source>Jstor Complete Legacy</source><creator>Baier, Bettina ; Schrewe, Klaus ; Maurer, Bernd</creator><creatorcontrib>Baier, Bettina ; Schrewe, Klaus ; Maurer, Bernd</creatorcontrib><description>Many diesel engines have to work at load profiles which, due to the low exhaust gas temperatures, necessitate active regeneration procedures to ensure continued engine operation and the reliability of the particulate filter. An active regeneration may be initiated via inner engine measures such as late injection. However, due to high maintenance interval and run time requirements for non-road applications the combustion of soot accumulated in the diesel particulate filter (DPF) often is realized via downstream processes. Known methods for this purpose are burner systems, systems based on downstream hydrocarbon injection (HCI) and subsequent hydrocarbon (HC) -conversion due to a catalyst or a combination of both. This paper describes an autarkic system using two-stage electro-thermal supported hydrocarbon conversion. This system is capable to regenerate a DPF within the entire engine operating range and it is less complex than flame burner systems. Compared to the systems that work only with HC-dosing, the described system has the advantage that it is able to regenerate a DPF at low exhaust gas temperatures. It has the additional benefit that it can be used for thermal management of any exhaust aftertreatment system, ensuring early light off even under adverse engine operating conditions such as cold start and prolonged idling. The system is NO ₂ - neutral and does not need an additional operating fluid like a fuel borne catalyst.</description><identifier>ISSN: 1946-3936</identifier><identifier>ISSN: 1946-3944</identifier><identifier>EISSN: 1946-3944</identifier><identifier>DOI: 10.4271/2011-01-0601</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Catalysts ; Conversion ; Diesel engines ; Emission standards ; Engines ; Exhaust gases ; Flow velocity ; Fluid filters ; Gas temperature ; Hydrocarbons ; Mass flow rate ; Oxidation ; Regeneration ; Road maintenance ; Soot ; Temperature control</subject><ispartof>SAE International journal of engines, 2011-01, Vol.4 (1), p.508-514, Article 2011-01-0601</ispartof><rights>Copyright © 2011 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-5fd8c2bdbd018dfdc87643c1db42b9533c30454de8c564aadd1946fc91e3d42f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26278166$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26278166$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,27905,27906,57998,58231</link.rule.ids></links><search><creatorcontrib>Baier, Bettina</creatorcontrib><creatorcontrib>Schrewe, Klaus</creatorcontrib><creatorcontrib>Maurer, Bernd</creatorcontrib><title>Two-Stage Electro Thermal Supported HC (Hydro Carbon) Conversion</title><title>SAE International journal of engines</title><description>Many diesel engines have to work at load profiles which, due to the low exhaust gas temperatures, necessitate active regeneration procedures to ensure continued engine operation and the reliability of the particulate filter. An active regeneration may be initiated via inner engine measures such as late injection. However, due to high maintenance interval and run time requirements for non-road applications the combustion of soot accumulated in the diesel particulate filter (DPF) often is realized via downstream processes. Known methods for this purpose are burner systems, systems based on downstream hydrocarbon injection (HCI) and subsequent hydrocarbon (HC) -conversion due to a catalyst or a combination of both. This paper describes an autarkic system using two-stage electro-thermal supported hydrocarbon conversion. This system is capable to regenerate a DPF within the entire engine operating range and it is less complex than flame burner systems. Compared to the systems that work only with HC-dosing, the described system has the advantage that it is able to regenerate a DPF at low exhaust gas temperatures. It has the additional benefit that it can be used for thermal management of any exhaust aftertreatment system, ensuring early light off even under adverse engine operating conditions such as cold start and prolonged idling. The system is NO ₂ - neutral and does not need an additional operating fluid like a fuel borne catalyst.</description><subject>Catalysts</subject><subject>Conversion</subject><subject>Diesel engines</subject><subject>Emission standards</subject><subject>Engines</subject><subject>Exhaust gases</subject><subject>Flow velocity</subject><subject>Fluid filters</subject><subject>Gas temperature</subject><subject>Hydrocarbons</subject><subject>Mass flow rate</subject><subject>Oxidation</subject><subject>Regeneration</subject><subject>Road maintenance</subject><subject>Soot</subject><subject>Temperature control</subject><issn>1946-3936</issn><issn>1946-3944</issn><issn>1946-3944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkM1LAzEQxYMoWKs3r8KCFwWj-dps9mZZqhUKHlrPIZtktWW7WZNU6X9vykpFeDAD8-PNzAPgEqN7Rgr8QBDGECVxhI_ACJeMQ1oydnzoKT8FZyGsEeIFomgEHpffDi6ierfZtLU6epctP6zfqDZbbPve-WhNNquym9nOpFmlfO2626xy3Zf1YeW6c3DSqDbYi986Bm9P02U1g_PX55dqMoeaYhJh3hihSW1qg7AwjdGi4IxqbGpG6jKnVFPEcmas0DlnShmzv7jRJbbUMNLQMbgefHvvPrc2RLl2W9-llZLkDOVclIIm6m6gtHcheNvI3q82yu8kRnKfkdxnJFFSyijhcMCDsnLVRZsMY3pKtX_m__mrgV-H6PzBm3BSCMw5_QGwgnCl</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Baier, Bettina</creator><creator>Schrewe, Klaus</creator><creator>Maurer, Bernd</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110101</creationdate><title>Two-Stage Electro Thermal Supported HC (Hydro Carbon) Conversion</title><author>Baier, Bettina ; Schrewe, Klaus ; Maurer, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-5fd8c2bdbd018dfdc87643c1db42b9533c30454de8c564aadd1946fc91e3d42f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Catalysts</topic><topic>Conversion</topic><topic>Diesel engines</topic><topic>Emission standards</topic><topic>Engines</topic><topic>Exhaust gases</topic><topic>Flow velocity</topic><topic>Fluid filters</topic><topic>Gas temperature</topic><topic>Hydrocarbons</topic><topic>Mass flow rate</topic><topic>Oxidation</topic><topic>Regeneration</topic><topic>Road maintenance</topic><topic>Soot</topic><topic>Temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baier, Bettina</creatorcontrib><creatorcontrib>Schrewe, Klaus</creatorcontrib><creatorcontrib>Maurer, Bernd</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>SAE International journal of engines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baier, Bettina</au><au>Schrewe, Klaus</au><au>Maurer, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Stage Electro Thermal Supported HC (Hydro Carbon) Conversion</atitle><jtitle>SAE International journal of engines</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>4</volume><issue>1</issue><spage>508</spage><epage>514</epage><pages>508-514</pages><artnum>2011-01-0601</artnum><issn>1946-3936</issn><issn>1946-3944</issn><eissn>1946-3944</eissn><abstract>Many diesel engines have to work at load profiles which, due to the low exhaust gas temperatures, necessitate active regeneration procedures to ensure continued engine operation and the reliability of the particulate filter. An active regeneration may be initiated via inner engine measures such as late injection. However, due to high maintenance interval and run time requirements for non-road applications the combustion of soot accumulated in the diesel particulate filter (DPF) often is realized via downstream processes. Known methods for this purpose are burner systems, systems based on downstream hydrocarbon injection (HCI) and subsequent hydrocarbon (HC) -conversion due to a catalyst or a combination of both. This paper describes an autarkic system using two-stage electro-thermal supported hydrocarbon conversion. This system is capable to regenerate a DPF within the entire engine operating range and it is less complex than flame burner systems. Compared to the systems that work only with HC-dosing, the described system has the advantage that it is able to regenerate a DPF at low exhaust gas temperatures. It has the additional benefit that it can be used for thermal management of any exhaust aftertreatment system, ensuring early light off even under adverse engine operating conditions such as cold start and prolonged idling. The system is NO ₂ - neutral and does not need an additional operating fluid like a fuel borne catalyst.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2011-01-0601</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1946-3936
ispartof SAE International journal of engines, 2011-01, Vol.4 (1), p.508-514, Article 2011-01-0601
issn 1946-3936
1946-3944
1946-3944
language eng
recordid cdi_proquest_journals_2540568983
source Jstor Complete Legacy
subjects Catalysts
Conversion
Diesel engines
Emission standards
Engines
Exhaust gases
Flow velocity
Fluid filters
Gas temperature
Hydrocarbons
Mass flow rate
Oxidation
Regeneration
Road maintenance
Soot
Temperature control
title Two-Stage Electro Thermal Supported HC (Hydro Carbon) Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Stage%20Electro%20Thermal%20Supported%20HC%20(Hydro%20Carbon)%20Conversion&rft.jtitle=SAE%20International%20journal%20of%20engines&rft.au=Baier,%20Bettina&rft.date=2011-01-01&rft.volume=4&rft.issue=1&rft.spage=508&rft.epage=514&rft.pages=508-514&rft.artnum=2011-01-0601&rft.issn=1946-3936&rft.eissn=1946-3944&rft_id=info:doi/10.4271/2011-01-0601&rft_dat=%3Cjstor_proqu%3E26278166%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540568983&rft_id=info:pmid/&rft_jstor_id=26278166&rfr_iscdi=true