A Scalable Modeling Approach for the Simulation and Design Optimization of Automotive Turbochargers

Engine downsizing and super/turbocharging is currently the most followed trend in order to reduce CO₂ emissions and increase the powertrain efficiency. A key challenge for achieving the desired fuel economy benefits lies in optimizing the design and control of the engine boosting system, which requi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE International journal of engines 2015-04, Vol.8 (4), p.1616-1628, Article 2015-01-1288
Hauptverfasser: Canova, Marcello, Naddeo, Massimo, Liu, Yuxing, Zhou, Junqiang, Wang, Yue-Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1628
container_issue 4
container_start_page 1616
container_title SAE International journal of engines
container_volume 8
creator Canova, Marcello
Naddeo, Massimo
Liu, Yuxing
Zhou, Junqiang
Wang, Yue-Yun
description Engine downsizing and super/turbocharging is currently the most followed trend in order to reduce CO₂ emissions and increase the powertrain efficiency. A key challenge for achieving the desired fuel economy benefits lies in optimizing the design and control of the engine boosting system, which requires the ability to rapidly sort different design options and technologies in simulation, evaluating their impact on engine performance and fuel consumption. This paper presents a scalable modeling approach for the characterization of flow and efficiency maps for automotive turbochargers. Starting from the dimensional analysis theory for turbomachinery and a set of well-known control-oriented models for turbocharged engines simulation, a novel scalable model is proposed to predict the flow and efficiency maps of centrifugal compressors and radial inflow turbines as function of their key design parameters. The proposed approach is validated on a database of compressors and turbines for automotive boosting applications. Examples are given to illustrate how the characteristic curves can be scaled with key design parameters.
doi_str_mv 10.4271/2015-01-1288
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2540550671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26278058</jstor_id><sourcerecordid>26278058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-41d4cf75b3c334dba10000f34e6278365521c2c25a7890941840f16e3d52a6053</originalsourceid><addsrcrecordid>eNpVkMtLxDAQxoMouD5uXoWAV6t5tz2W9Qkre9j1HNI03c3SNmuSCvrX21JZcS4zDD--me8D4AqjO0ZSfE8Q5gnCCSZZdgRmOGcioTljx4eZilNwFsIOIZEiimZAF3ClVaPKxsA3V5nGdhtY7PfeKb2FtfMwbg1c2bZvVLSug6qr4IMJdtPB5T7a1n5Pe1fDoo-uddF-Grjufen0VvmN8eECnNSqCebyt5-D96fH9fwlWSyfX-fFItE0FzFhuGK6TnlJNaWsKhVGQ9WUGUHSjArOCdZEE67SLEc5wxlDNRaGVpwogTg9BzeT7vD9R29ClDvX-244KQlniPPBNB6o24nS3oXgTS333rbKf0mM5BijHGOUCMsxxgFPJjwoI20XzSA4GlbNn_h__nridyE6f9AmowfEM_oDeyd8pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540550671</pqid></control><display><type>article</type><title>A Scalable Modeling Approach for the Simulation and Design Optimization of Automotive Turbochargers</title><source>Jstor Complete Legacy</source><creator>Canova, Marcello ; Naddeo, Massimo ; Liu, Yuxing ; Zhou, Junqiang ; Wang, Yue-Yun</creator><creatorcontrib>Canova, Marcello ; Naddeo, Massimo ; Liu, Yuxing ; Zhou, Junqiang ; Wang, Yue-Yun</creatorcontrib><description>Engine downsizing and super/turbocharging is currently the most followed trend in order to reduce CO₂ emissions and increase the powertrain efficiency. A key challenge for achieving the desired fuel economy benefits lies in optimizing the design and control of the engine boosting system, which requires the ability to rapidly sort different design options and technologies in simulation, evaluating their impact on engine performance and fuel consumption. This paper presents a scalable modeling approach for the characterization of flow and efficiency maps for automotive turbochargers. Starting from the dimensional analysis theory for turbomachinery and a set of well-known control-oriented models for turbocharged engines simulation, a novel scalable model is proposed to predict the flow and efficiency maps of centrifugal compressors and radial inflow turbines as function of their key design parameters. The proposed approach is validated on a database of compressors and turbines for automotive boosting applications. Examples are given to illustrate how the characteristic curves can be scaled with key design parameters.</description><identifier>ISSN: 1946-3936</identifier><identifier>ISSN: 1946-3944</identifier><identifier>EISSN: 1946-3944</identifier><identifier>DOI: 10.4271/2015-01-1288</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Air compressors ; Automotive engines ; Calibration ; Design optimization ; Downsizing ; Engines ; Flow velocity ; Fuel consumption ; Fuel economy ; Impellers ; Mach number ; Mathematical independent variables ; Modeling ; Parametric models ; Powertrain ; Superchargers ; Turbines</subject><ispartof>SAE International journal of engines, 2015-04, Vol.8 (4), p.1616-1628, Article 2015-01-1288</ispartof><rights>Copyright © 2015 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-41d4cf75b3c334dba10000f34e6278365521c2c25a7890941840f16e3d52a6053</citedby><cites>FETCH-LOGICAL-c396t-41d4cf75b3c334dba10000f34e6278365521c2c25a7890941840f16e3d52a6053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26278058$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26278058$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Canova, Marcello</creatorcontrib><creatorcontrib>Naddeo, Massimo</creatorcontrib><creatorcontrib>Liu, Yuxing</creatorcontrib><creatorcontrib>Zhou, Junqiang</creatorcontrib><creatorcontrib>Wang, Yue-Yun</creatorcontrib><title>A Scalable Modeling Approach for the Simulation and Design Optimization of Automotive Turbochargers</title><title>SAE International journal of engines</title><description>Engine downsizing and super/turbocharging is currently the most followed trend in order to reduce CO₂ emissions and increase the powertrain efficiency. A key challenge for achieving the desired fuel economy benefits lies in optimizing the design and control of the engine boosting system, which requires the ability to rapidly sort different design options and technologies in simulation, evaluating their impact on engine performance and fuel consumption. This paper presents a scalable modeling approach for the characterization of flow and efficiency maps for automotive turbochargers. Starting from the dimensional analysis theory for turbomachinery and a set of well-known control-oriented models for turbocharged engines simulation, a novel scalable model is proposed to predict the flow and efficiency maps of centrifugal compressors and radial inflow turbines as function of their key design parameters. The proposed approach is validated on a database of compressors and turbines for automotive boosting applications. Examples are given to illustrate how the characteristic curves can be scaled with key design parameters.</description><subject>Air compressors</subject><subject>Automotive engines</subject><subject>Calibration</subject><subject>Design optimization</subject><subject>Downsizing</subject><subject>Engines</subject><subject>Flow velocity</subject><subject>Fuel consumption</subject><subject>Fuel economy</subject><subject>Impellers</subject><subject>Mach number</subject><subject>Mathematical independent variables</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Powertrain</subject><subject>Superchargers</subject><subject>Turbines</subject><issn>1946-3936</issn><issn>1946-3944</issn><issn>1946-3944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkMtLxDAQxoMouD5uXoWAV6t5tz2W9Qkre9j1HNI03c3SNmuSCvrX21JZcS4zDD--me8D4AqjO0ZSfE8Q5gnCCSZZdgRmOGcioTljx4eZilNwFsIOIZEiimZAF3ClVaPKxsA3V5nGdhtY7PfeKb2FtfMwbg1c2bZvVLSug6qr4IMJdtPB5T7a1n5Pe1fDoo-uddF-Grjufen0VvmN8eECnNSqCebyt5-D96fH9fwlWSyfX-fFItE0FzFhuGK6TnlJNaWsKhVGQ9WUGUHSjArOCdZEE67SLEc5wxlDNRaGVpwogTg9BzeT7vD9R29ClDvX-244KQlniPPBNB6o24nS3oXgTS333rbKf0mM5BijHGOUCMsxxgFPJjwoI20XzSA4GlbNn_h__nridyE6f9AmowfEM_oDeyd8pQ</recordid><startdate>20150414</startdate><enddate>20150414</enddate><creator>Canova, Marcello</creator><creator>Naddeo, Massimo</creator><creator>Liu, Yuxing</creator><creator>Zhou, Junqiang</creator><creator>Wang, Yue-Yun</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150414</creationdate><title>A Scalable Modeling Approach for the Simulation and Design Optimization of Automotive Turbochargers</title><author>Canova, Marcello ; Naddeo, Massimo ; Liu, Yuxing ; Zhou, Junqiang ; Wang, Yue-Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-41d4cf75b3c334dba10000f34e6278365521c2c25a7890941840f16e3d52a6053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air compressors</topic><topic>Automotive engines</topic><topic>Calibration</topic><topic>Design optimization</topic><topic>Downsizing</topic><topic>Engines</topic><topic>Flow velocity</topic><topic>Fuel consumption</topic><topic>Fuel economy</topic><topic>Impellers</topic><topic>Mach number</topic><topic>Mathematical independent variables</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Powertrain</topic><topic>Superchargers</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canova, Marcello</creatorcontrib><creatorcontrib>Naddeo, Massimo</creatorcontrib><creatorcontrib>Liu, Yuxing</creatorcontrib><creatorcontrib>Zhou, Junqiang</creatorcontrib><creatorcontrib>Wang, Yue-Yun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>SAE International journal of engines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canova, Marcello</au><au>Naddeo, Massimo</au><au>Liu, Yuxing</au><au>Zhou, Junqiang</au><au>Wang, Yue-Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scalable Modeling Approach for the Simulation and Design Optimization of Automotive Turbochargers</atitle><jtitle>SAE International journal of engines</jtitle><date>2015-04-14</date><risdate>2015</risdate><volume>8</volume><issue>4</issue><spage>1616</spage><epage>1628</epage><pages>1616-1628</pages><artnum>2015-01-1288</artnum><issn>1946-3936</issn><issn>1946-3944</issn><eissn>1946-3944</eissn><abstract>Engine downsizing and super/turbocharging is currently the most followed trend in order to reduce CO₂ emissions and increase the powertrain efficiency. A key challenge for achieving the desired fuel economy benefits lies in optimizing the design and control of the engine boosting system, which requires the ability to rapidly sort different design options and technologies in simulation, evaluating their impact on engine performance and fuel consumption. This paper presents a scalable modeling approach for the characterization of flow and efficiency maps for automotive turbochargers. Starting from the dimensional analysis theory for turbomachinery and a set of well-known control-oriented models for turbocharged engines simulation, a novel scalable model is proposed to predict the flow and efficiency maps of centrifugal compressors and radial inflow turbines as function of their key design parameters. The proposed approach is validated on a database of compressors and turbines for automotive boosting applications. Examples are given to illustrate how the characteristic curves can be scaled with key design parameters.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2015-01-1288</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1946-3936
ispartof SAE International journal of engines, 2015-04, Vol.8 (4), p.1616-1628, Article 2015-01-1288
issn 1946-3936
1946-3944
1946-3944
language eng
recordid cdi_proquest_journals_2540550671
source Jstor Complete Legacy
subjects Air compressors
Automotive engines
Calibration
Design optimization
Downsizing
Engines
Flow velocity
Fuel consumption
Fuel economy
Impellers
Mach number
Mathematical independent variables
Modeling
Parametric models
Powertrain
Superchargers
Turbines
title A Scalable Modeling Approach for the Simulation and Design Optimization of Automotive Turbochargers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scalable%20Modeling%20Approach%20for%20the%20Simulation%20and%20Design%20Optimization%20of%20Automotive%20Turbochargers&rft.jtitle=SAE%20International%20journal%20of%20engines&rft.au=Canova,%20Marcello&rft.date=2015-04-14&rft.volume=8&rft.issue=4&rft.spage=1616&rft.epage=1628&rft.pages=1616-1628&rft.artnum=2015-01-1288&rft.issn=1946-3936&rft.eissn=1946-3944&rft_id=info:doi/10.4271/2015-01-1288&rft_dat=%3Cjstor_proqu%3E26278058%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540550671&rft_id=info:pmid/&rft_jstor_id=26278058&rfr_iscdi=true