Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells

A multi-walled carbon nanotube (CNT) sheet was employed and investigated as a microporous layer (MPL) of proton exchange membrane fuel cell (PEMFC). The CNT sheet was synthesized via floating catalyst chemical vapor deposition method. The CNT sheet MPLs with the thickness of 15, 30, and 100 μm were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2021-07, Vol.227, p.120459, Article 120459
Hauptverfasser: Kim, Jaeyeon, Kim, Hyeok, Song, Hyeonjun, Kim, Dasol, Kim, Geon Hwi, Im, Dasom, Jeong, Youngjin, Park, Taehyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120459
container_title Energy (Oxford)
container_volume 227
creator Kim, Jaeyeon
Kim, Hyeok
Song, Hyeonjun
Kim, Dasol
Kim, Geon Hwi
Im, Dasom
Jeong, Youngjin
Park, Taehyun
description A multi-walled carbon nanotube (CNT) sheet was employed and investigated as a microporous layer (MPL) of proton exchange membrane fuel cell (PEMFC). The CNT sheet was synthesized via floating catalyst chemical vapor deposition method. The CNT sheet MPLs with the thickness of 15, 30, and 100 μm were prepared and compared with a commercial carbon-black MPL. As a result, it was found that the PEMFC with the 15-μm-thick CNT sheet MPL showed high electrochemical performance, and it outtopped the conventional PEMFC. The 15-μm-thick CNT sheet MPL increased the peak power density by 50.9% in air-supplied cathode and 20.9% in pure oxygen-supplied cathode compared to the conventional PEMFC. Through electrochemical impedance analyses, it was found that the CNT sheet MPL effectively decreased a charge transfer resistance, which is attributed to the improved reaction kinetics and mass transport through the MPL. [Display omitted] •CNT sheet was employed as a microporous layer for PEMFCs.•CNT sheet was fabricated via cost-effective floating catalyst CVD method.•Electrochemical performance was increased by 20.9%–50.9% through this approach.•EIS and SEM were employed to further investigate the performance enhancement.
doi_str_mv 10.1016/j.energy.2021.120459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2540549541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544221007088</els_id><sourcerecordid>2540549541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-503d0e0f44c494c844972003ce61add3733aff4ca02db387b2c25760803e14dc3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuA69aTWy8bQQZvMOBmXIc0PZ1paZMxacV5eyt17eps_sv5P0JuGaQMWHbfpegw7E8pB85SxkGq8oysWJGLJMsLdU5WIDJIlJT8klzF2AGAKspyRXYbEyrvqDPOj1OFNB4QR2oiNXRobfBHH_wUaW9OGGjjAz0GP84G_LYH4_ZIBxyqYBzSZsKeWuz7eE0uGtNHvPm7a_Lx_LTbvCbb95e3zeM2sULIMVEgakBopLSylLaQssw5gLCYMVPXIhfCNI20BnhdiSKvuOUqz6AAgUzWVqzJ3ZI7__Q5YRx156fg5krNlQQlSyXZrJKLal4TY8BGH0M7mHDSDPQvP93phZ_-5acXfrPtYbHhvOCrxaCjbdFZrNuAdtS1b_8P-AE0c3qm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540549541</pqid></control><display><type>article</type><title>Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kim, Jaeyeon ; Kim, Hyeok ; Song, Hyeonjun ; Kim, Dasol ; Kim, Geon Hwi ; Im, Dasom ; Jeong, Youngjin ; Park, Taehyun</creator><creatorcontrib>Kim, Jaeyeon ; Kim, Hyeok ; Song, Hyeonjun ; Kim, Dasol ; Kim, Geon Hwi ; Im, Dasom ; Jeong, Youngjin ; Park, Taehyun</creatorcontrib><description>A multi-walled carbon nanotube (CNT) sheet was employed and investigated as a microporous layer (MPL) of proton exchange membrane fuel cell (PEMFC). The CNT sheet was synthesized via floating catalyst chemical vapor deposition method. The CNT sheet MPLs with the thickness of 15, 30, and 100 μm were prepared and compared with a commercial carbon-black MPL. As a result, it was found that the PEMFC with the 15-μm-thick CNT sheet MPL showed high electrochemical performance, and it outtopped the conventional PEMFC. The 15-μm-thick CNT sheet MPL increased the peak power density by 50.9% in air-supplied cathode and 20.9% in pure oxygen-supplied cathode compared to the conventional PEMFC. Through electrochemical impedance analyses, it was found that the CNT sheet MPL effectively decreased a charge transfer resistance, which is attributed to the improved reaction kinetics and mass transport through the MPL. [Display omitted] •CNT sheet was employed as a microporous layer for PEMFCs.•CNT sheet was fabricated via cost-effective floating catalyst CVD method.•Electrochemical performance was increased by 20.9%–50.9% through this approach.•EIS and SEM were employed to further investigate the performance enhancement.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.120459</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Carbon ; Catalysts ; Cathodes ; Charge transfer ; Chemical synthesis ; Chemical vapor deposition ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Fuel cells ; Fuel technology ; Gas diffusion layer ; Mass transport ; Microporous layer ; Multi wall carbon nanotubes ; Multi-walled carbon nanotube sheet ; Proton exchange membrane fuel cell ; Proton exchange membrane fuel cells ; Protons ; Reaction kinetics</subject><ispartof>Energy (Oxford), 2021-07, Vol.227, p.120459, Article 120459</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-503d0e0f44c494c844972003ce61add3733aff4ca02db387b2c25760803e14dc3</citedby><cites>FETCH-LOGICAL-c334t-503d0e0f44c494c844972003ce61add3733aff4ca02db387b2c25760803e14dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2021.120459$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kim, Jaeyeon</creatorcontrib><creatorcontrib>Kim, Hyeok</creatorcontrib><creatorcontrib>Song, Hyeonjun</creatorcontrib><creatorcontrib>Kim, Dasol</creatorcontrib><creatorcontrib>Kim, Geon Hwi</creatorcontrib><creatorcontrib>Im, Dasom</creatorcontrib><creatorcontrib>Jeong, Youngjin</creatorcontrib><creatorcontrib>Park, Taehyun</creatorcontrib><title>Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells</title><title>Energy (Oxford)</title><description>A multi-walled carbon nanotube (CNT) sheet was employed and investigated as a microporous layer (MPL) of proton exchange membrane fuel cell (PEMFC). The CNT sheet was synthesized via floating catalyst chemical vapor deposition method. The CNT sheet MPLs with the thickness of 15, 30, and 100 μm were prepared and compared with a commercial carbon-black MPL. As a result, it was found that the PEMFC with the 15-μm-thick CNT sheet MPL showed high electrochemical performance, and it outtopped the conventional PEMFC. The 15-μm-thick CNT sheet MPL increased the peak power density by 50.9% in air-supplied cathode and 20.9% in pure oxygen-supplied cathode compared to the conventional PEMFC. Through electrochemical impedance analyses, it was found that the CNT sheet MPL effectively decreased a charge transfer resistance, which is attributed to the improved reaction kinetics and mass transport through the MPL. [Display omitted] •CNT sheet was employed as a microporous layer for PEMFCs.•CNT sheet was fabricated via cost-effective floating catalyst CVD method.•Electrochemical performance was increased by 20.9%–50.9% through this approach.•EIS and SEM were employed to further investigate the performance enhancement.</description><subject>Carbon</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Gas diffusion layer</subject><subject>Mass transport</subject><subject>Microporous layer</subject><subject>Multi wall carbon nanotubes</subject><subject>Multi-walled carbon nanotube sheet</subject><subject>Proton exchange membrane fuel cell</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Reaction kinetics</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuA69aTWy8bQQZvMOBmXIc0PZ1paZMxacV5eyt17eps_sv5P0JuGaQMWHbfpegw7E8pB85SxkGq8oysWJGLJMsLdU5WIDJIlJT8klzF2AGAKspyRXYbEyrvqDPOj1OFNB4QR2oiNXRobfBHH_wUaW9OGGjjAz0GP84G_LYH4_ZIBxyqYBzSZsKeWuz7eE0uGtNHvPm7a_Lx_LTbvCbb95e3zeM2sULIMVEgakBopLSylLaQssw5gLCYMVPXIhfCNI20BnhdiSKvuOUqz6AAgUzWVqzJ3ZI7__Q5YRx156fg5krNlQQlSyXZrJKLal4TY8BGH0M7mHDSDPQvP93phZ_-5acXfrPtYbHhvOCrxaCjbdFZrNuAdtS1b_8P-AE0c3qm</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Kim, Jaeyeon</creator><creator>Kim, Hyeok</creator><creator>Song, Hyeonjun</creator><creator>Kim, Dasol</creator><creator>Kim, Geon Hwi</creator><creator>Im, Dasom</creator><creator>Jeong, Youngjin</creator><creator>Park, Taehyun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210715</creationdate><title>Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells</title><author>Kim, Jaeyeon ; Kim, Hyeok ; Song, Hyeonjun ; Kim, Dasol ; Kim, Geon Hwi ; Im, Dasom ; Jeong, Youngjin ; Park, Taehyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-503d0e0f44c494c844972003ce61add3733aff4ca02db387b2c25760803e14dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Gas diffusion layer</topic><topic>Mass transport</topic><topic>Microporous layer</topic><topic>Multi wall carbon nanotubes</topic><topic>Multi-walled carbon nanotube sheet</topic><topic>Proton exchange membrane fuel cell</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jaeyeon</creatorcontrib><creatorcontrib>Kim, Hyeok</creatorcontrib><creatorcontrib>Song, Hyeonjun</creatorcontrib><creatorcontrib>Kim, Dasol</creatorcontrib><creatorcontrib>Kim, Geon Hwi</creatorcontrib><creatorcontrib>Im, Dasom</creatorcontrib><creatorcontrib>Jeong, Youngjin</creatorcontrib><creatorcontrib>Park, Taehyun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jaeyeon</au><au>Kim, Hyeok</au><au>Song, Hyeonjun</au><au>Kim, Dasol</au><au>Kim, Geon Hwi</au><au>Im, Dasom</au><au>Jeong, Youngjin</au><au>Park, Taehyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells</atitle><jtitle>Energy (Oxford)</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>227</volume><spage>120459</spage><pages>120459-</pages><artnum>120459</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>A multi-walled carbon nanotube (CNT) sheet was employed and investigated as a microporous layer (MPL) of proton exchange membrane fuel cell (PEMFC). The CNT sheet was synthesized via floating catalyst chemical vapor deposition method. The CNT sheet MPLs with the thickness of 15, 30, and 100 μm were prepared and compared with a commercial carbon-black MPL. As a result, it was found that the PEMFC with the 15-μm-thick CNT sheet MPL showed high electrochemical performance, and it outtopped the conventional PEMFC. The 15-μm-thick CNT sheet MPL increased the peak power density by 50.9% in air-supplied cathode and 20.9% in pure oxygen-supplied cathode compared to the conventional PEMFC. Through electrochemical impedance analyses, it was found that the CNT sheet MPL effectively decreased a charge transfer resistance, which is attributed to the improved reaction kinetics and mass transport through the MPL. [Display omitted] •CNT sheet was employed as a microporous layer for PEMFCs.•CNT sheet was fabricated via cost-effective floating catalyst CVD method.•Electrochemical performance was increased by 20.9%–50.9% through this approach.•EIS and SEM were employed to further investigate the performance enhancement.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.120459</doi></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2021-07, Vol.227, p.120459, Article 120459
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2540549541
source ScienceDirect Journals (5 years ago - present)
subjects Carbon
Catalysts
Cathodes
Charge transfer
Chemical synthesis
Chemical vapor deposition
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrochemistry
Fuel cells
Fuel technology
Gas diffusion layer
Mass transport
Microporous layer
Multi wall carbon nanotubes
Multi-walled carbon nanotube sheet
Proton exchange membrane fuel cell
Proton exchange membrane fuel cells
Protons
Reaction kinetics
title Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20sheet%20as%20a%20microporous%20layer%20for%20proton%20exchange%20membrane%20fuel%20cells&rft.jtitle=Energy%20(Oxford)&rft.au=Kim,%20Jaeyeon&rft.date=2021-07-15&rft.volume=227&rft.spage=120459&rft.pages=120459-&rft.artnum=120459&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.120459&rft_dat=%3Cproquest_cross%3E2540549541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540549541&rft_id=info:pmid/&rft_els_id=S0360544221007088&rfr_iscdi=true