Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis
Many machine learning applications can benefit from simulated data for systematic validation - in particular if real-life data is difficult to obtain or annotate. However, since simulations are prone to domain shift w.r.t. real-life data, it is crucial to verify the transferability of the obtained r...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-06 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rosenzweig, Julia Brito, Eduardo Hans-Ulrich Kobialka Maram Akila Schmidt, Nico M Schlicht, Peter Schneider, Jan David Hüger, Fabian Rottmann, Matthias Houben, Sebastian Wirtz, Tim |
description | Many machine learning applications can benefit from simulated data for systematic validation - in particular if real-life data is difficult to obtain or annotate. However, since simulations are prone to domain shift w.r.t. real-life data, it is crucial to verify the transferability of the obtained results. We propose a novel framework consisting of a generative label-to-image synthesis model together with different transferability measures to inspect to what extent we can transfer testing results of semantic segmentation models from synthetic data to equivalent real-life data. With slight modifications, our approach is extendable to, e.g., general multi-class classification tasks. Grounded on the transferability analysis, our approach additionally allows for extensive testing by incorporating controlled simulations. We validate our approach empirically on a semantic segmentation task on driving scenes. Transferability is tested using correlation analysis of IoU and a learned discriminator. Although the latter can distinguish between real-life and synthetic tests, in the former we observe surprisingly strong correlations of 0.7 for both cars and pedestrians. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2540004572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540004572</sourcerecordid><originalsourceid>FETCH-proquest_journals_25400045723</originalsourceid><addsrcrecordid>eNqNjs8KgkAYxJcgSMp3-KDzgu1qRkf7Q0E3pVMgG666orvmtxK-fUv0AJ1mht8wzIx4jPMN3YWMLYiP2ARBwLYxiyLukcddtKoQVhkNpoRUdWP7TTQRKAvIJFqlqz0kUy8QnYWj6YTSkNaqtPBWtoabeMqWWkOvnagkpJO2tUSFKzIvRYvS_-mSrM-n7HCh_WBeo1vOGzMO2qGcRaG7FUYx4_-1PpBQQvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540004572</pqid></control><display><type>article</type><title>Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis</title><source>Free E- Journals</source><creator>Rosenzweig, Julia ; Brito, Eduardo ; Hans-Ulrich Kobialka ; Maram Akila ; Schmidt, Nico M ; Schlicht, Peter ; Schneider, Jan David ; Hüger, Fabian ; Rottmann, Matthias ; Houben, Sebastian ; Wirtz, Tim</creator><creatorcontrib>Rosenzweig, Julia ; Brito, Eduardo ; Hans-Ulrich Kobialka ; Maram Akila ; Schmidt, Nico M ; Schlicht, Peter ; Schneider, Jan David ; Hüger, Fabian ; Rottmann, Matthias ; Houben, Sebastian ; Wirtz, Tim</creatorcontrib><description>Many machine learning applications can benefit from simulated data for systematic validation - in particular if real-life data is difficult to obtain or annotate. However, since simulations are prone to domain shift w.r.t. real-life data, it is crucial to verify the transferability of the obtained results. We propose a novel framework consisting of a generative label-to-image synthesis model together with different transferability measures to inspect to what extent we can transfer testing results of semantic segmentation models from synthetic data to equivalent real-life data. With slight modifications, our approach is extendable to, e.g., general multi-class classification tasks. Grounded on the transferability analysis, our approach additionally allows for extensive testing by incorporating controlled simulations. We validate our approach empirically on a semantic segmentation task on driving scenes. Transferability is tested using correlation analysis of IoU and a learned discriminator. Although the latter can distinguish between real-life and synthetic tests, in the former we observe surprisingly strong correlations of 0.7 for both cars and pedestrians.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Correlation analysis ; Domains ; Image segmentation ; Machine learning ; Pedestrians ; Semantic segmentation ; Semantics ; Simulation ; Synthesis</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Rosenzweig, Julia</creatorcontrib><creatorcontrib>Brito, Eduardo</creatorcontrib><creatorcontrib>Hans-Ulrich Kobialka</creatorcontrib><creatorcontrib>Maram Akila</creatorcontrib><creatorcontrib>Schmidt, Nico M</creatorcontrib><creatorcontrib>Schlicht, Peter</creatorcontrib><creatorcontrib>Schneider, Jan David</creatorcontrib><creatorcontrib>Hüger, Fabian</creatorcontrib><creatorcontrib>Rottmann, Matthias</creatorcontrib><creatorcontrib>Houben, Sebastian</creatorcontrib><creatorcontrib>Wirtz, Tim</creatorcontrib><title>Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis</title><title>arXiv.org</title><description>Many machine learning applications can benefit from simulated data for systematic validation - in particular if real-life data is difficult to obtain or annotate. However, since simulations are prone to domain shift w.r.t. real-life data, it is crucial to verify the transferability of the obtained results. We propose a novel framework consisting of a generative label-to-image synthesis model together with different transferability measures to inspect to what extent we can transfer testing results of semantic segmentation models from synthetic data to equivalent real-life data. With slight modifications, our approach is extendable to, e.g., general multi-class classification tasks. Grounded on the transferability analysis, our approach additionally allows for extensive testing by incorporating controlled simulations. We validate our approach empirically on a semantic segmentation task on driving scenes. Transferability is tested using correlation analysis of IoU and a learned discriminator. Although the latter can distinguish between real-life and synthetic tests, in the former we observe surprisingly strong correlations of 0.7 for both cars and pedestrians.</description><subject>Correlation analysis</subject><subject>Domains</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Pedestrians</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Simulation</subject><subject>Synthesis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs8KgkAYxJcgSMp3-KDzgu1qRkf7Q0E3pVMgG666orvmtxK-fUv0AJ1mht8wzIx4jPMN3YWMLYiP2ARBwLYxiyLukcddtKoQVhkNpoRUdWP7TTQRKAvIJFqlqz0kUy8QnYWj6YTSkNaqtPBWtoabeMqWWkOvnagkpJO2tUSFKzIvRYvS_-mSrM-n7HCh_WBeo1vOGzMO2qGcRaG7FUYx4_-1PpBQQvA</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Rosenzweig, Julia</creator><creator>Brito, Eduardo</creator><creator>Hans-Ulrich Kobialka</creator><creator>Maram Akila</creator><creator>Schmidt, Nico M</creator><creator>Schlicht, Peter</creator><creator>Schneider, Jan David</creator><creator>Hüger, Fabian</creator><creator>Rottmann, Matthias</creator><creator>Houben, Sebastian</creator><creator>Wirtz, Tim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210610</creationdate><title>Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis</title><author>Rosenzweig, Julia ; Brito, Eduardo ; Hans-Ulrich Kobialka ; Maram Akila ; Schmidt, Nico M ; Schlicht, Peter ; Schneider, Jan David ; Hüger, Fabian ; Rottmann, Matthias ; Houben, Sebastian ; Wirtz, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25400045723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Correlation analysis</topic><topic>Domains</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Pedestrians</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Simulation</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Rosenzweig, Julia</creatorcontrib><creatorcontrib>Brito, Eduardo</creatorcontrib><creatorcontrib>Hans-Ulrich Kobialka</creatorcontrib><creatorcontrib>Maram Akila</creatorcontrib><creatorcontrib>Schmidt, Nico M</creatorcontrib><creatorcontrib>Schlicht, Peter</creatorcontrib><creatorcontrib>Schneider, Jan David</creatorcontrib><creatorcontrib>Hüger, Fabian</creatorcontrib><creatorcontrib>Rottmann, Matthias</creatorcontrib><creatorcontrib>Houben, Sebastian</creatorcontrib><creatorcontrib>Wirtz, Tim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenzweig, Julia</au><au>Brito, Eduardo</au><au>Hans-Ulrich Kobialka</au><au>Maram Akila</au><au>Schmidt, Nico M</au><au>Schlicht, Peter</au><au>Schneider, Jan David</au><au>Hüger, Fabian</au><au>Rottmann, Matthias</au><au>Houben, Sebastian</au><au>Wirtz, Tim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis</atitle><jtitle>arXiv.org</jtitle><date>2021-06-10</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Many machine learning applications can benefit from simulated data for systematic validation - in particular if real-life data is difficult to obtain or annotate. However, since simulations are prone to domain shift w.r.t. real-life data, it is crucial to verify the transferability of the obtained results. We propose a novel framework consisting of a generative label-to-image synthesis model together with different transferability measures to inspect to what extent we can transfer testing results of semantic segmentation models from synthetic data to equivalent real-life data. With slight modifications, our approach is extendable to, e.g., general multi-class classification tasks. Grounded on the transferability analysis, our approach additionally allows for extensive testing by incorporating controlled simulations. We validate our approach empirically on a semantic segmentation task on driving scenes. Transferability is tested using correlation analysis of IoU and a learned discriminator. Although the latter can distinguish between real-life and synthetic tests, in the former we observe surprisingly strong correlations of 0.7 for both cars and pedestrians.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2540004572 |
source | Free E- Journals |
subjects | Correlation analysis Domains Image segmentation Machine learning Pedestrians Semantic segmentation Semantics Simulation Synthesis |
title | Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Validation%20of%20Simulation-Based%20Testing:%20Bypassing%20Domain%20Shift%20with%20Label-to-Image%20Synthesis&rft.jtitle=arXiv.org&rft.au=Rosenzweig,%20Julia&rft.date=2021-06-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2540004572%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540004572&rft_id=info:pmid/&rfr_iscdi=true |