Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example

In this brief, a decomposition-learning-based output tracking approach is proposed to compensate for both hysteresis and dynamics effects on output tracking of hysteresis systems such as smart actuators. Simultaneous hysteresis and dynamics control (SHDC) is needed to fully exploit smart or soft act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2021-07, Vol.29 (4), p.1775-1782
Hauptverfasser: Liu, Jiangbo, Wang, Jingren, Zou, Qingze
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1782
container_issue 4
container_start_page 1775
container_title IEEE transactions on control systems technology
container_volume 29
creator Liu, Jiangbo
Wang, Jingren
Zou, Qingze
description In this brief, a decomposition-learning-based output tracking approach is proposed to compensate for both hysteresis and dynamics effects on output tracking of hysteresis systems such as smart actuators. Simultaneous hysteresis and dynamics control (SHDC) is needed to fully exploit smart or soft actuators/sensors for high-speed, large-range positioning/tracking. It remains still, however, as a challenge to achieve SHDC with both precision (performance) and robustness in general output tracking (i.e., not restricted to periodic/repeated operations), and without complicity in modeling and controller design and/or online implementation. The proposed approach aims to address these challenges, by utilizing libraries of input-output elements constructed offline to online decompose the partially known (i.e., previewed) desired output trajectory and synthesize the control input. Iterative learning control techniques are used a priori to obtain the input elements each tracking the corresponding output elements accurately, and the Preisach modeling of hysteresis is employed to obtain the combination coefficients of the synthesized control input. An experimental implementation to high-speed, large-range nanopositioning using piezoelectric actuator is presented to demonstrate the efficiency and efficacy of the proposed approach in achieving SHDC.
doi_str_mv 10.1109/TCST.2020.3018596
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2539977527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9185024</ieee_id><sourcerecordid>2539977527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-e814c4e84531d77faa0215f29ed64023c5ced03eb62f112b038bc12c7b9bfdd83</originalsourceid><addsrcrecordid>eNo9kN1KwzAUx4soqNMHEG8CXmfmo0lb73RTJwwFN69Lmp7OzDWpSQruHXxoO6ZencM5_w_4JckFJWNKSXG9nCyWY0YYGXNCc1HIg-SECpFjkktxOOxEciwFl8fJaQhrQmgqWHaSfE9Bu7ZzwUTjLJ6D8tbYFb5TAWr00seuj2jplf4Yrig6tDBtv4nKgusDmm1DBA_BBKRsjaZbq1qjA5o4G73b3KCZWb3jRQdD1lz5FeBXZVeAnpV1f5273Psv1XYbOEuOGrUJcP47R8nbw_1yMsPzl8enye0cayZlxJDTVKeQp4LTOssapQijomEF1DIljGuhoSYcKskaSllFeF5pynRWFVVT1zkfJVf73M67zx5CLNeu93aoLJngRZFlA5tBRfcq7V0IHpqy86ZVfltSUu6glzvo5Q56-Qt98FzuPQYA_vXF8CQs5T8J1oCa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539977527</pqid></control><display><type>article</type><title>Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jiangbo ; Wang, Jingren ; Zou, Qingze</creator><creatorcontrib>Liu, Jiangbo ; Wang, Jingren ; Zou, Qingze</creatorcontrib><description>In this brief, a decomposition-learning-based output tracking approach is proposed to compensate for both hysteresis and dynamics effects on output tracking of hysteresis systems such as smart actuators. Simultaneous hysteresis and dynamics control (SHDC) is needed to fully exploit smart or soft actuators/sensors for high-speed, large-range positioning/tracking. It remains still, however, as a challenge to achieve SHDC with both precision (performance) and robustness in general output tracking (i.e., not restricted to periodic/repeated operations), and without complicity in modeling and controller design and/or online implementation. The proposed approach aims to address these challenges, by utilizing libraries of input-output elements constructed offline to online decompose the partially known (i.e., previewed) desired output trajectory and synthesize the control input. Iterative learning control techniques are used a priori to obtain the input elements each tracking the corresponding output elements accurately, and the Preisach modeling of hysteresis is employed to obtain the combination coefficients of the synthesized control input. An experimental implementation to high-speed, large-range nanopositioning using piezoelectric actuator is presented to demonstrate the efficiency and efficacy of the proposed approach in achieving SHDC.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2020.3018596</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems design ; Data driven ; Decomposition ; decomposition control ; High speed ; Hysteresis ; Iterative learning control ; iterative learning control (ILC) ; Iterative methods ; Learning ; Modelling ; Nanopositioning ; piezoelectric actuator ; Piezoelectric actuators ; simultaneous hysteresis and dynamics compensation ; Synthesis ; Tracking ; Trajectory control</subject><ispartof>IEEE transactions on control systems technology, 2021-07, Vol.29 (4), p.1775-1782</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-e814c4e84531d77faa0215f29ed64023c5ced03eb62f112b038bc12c7b9bfdd83</citedby><cites>FETCH-LOGICAL-c266t-e814c4e84531d77faa0215f29ed64023c5ced03eb62f112b038bc12c7b9bfdd83</cites><orcidid>0000-0002-3949-0751 ; 0000-0001-5183-4409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9185024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9185024$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jiangbo</creatorcontrib><creatorcontrib>Wang, Jingren</creatorcontrib><creatorcontrib>Zou, Qingze</creatorcontrib><title>Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this brief, a decomposition-learning-based output tracking approach is proposed to compensate for both hysteresis and dynamics effects on output tracking of hysteresis systems such as smart actuators. Simultaneous hysteresis and dynamics control (SHDC) is needed to fully exploit smart or soft actuators/sensors for high-speed, large-range positioning/tracking. It remains still, however, as a challenge to achieve SHDC with both precision (performance) and robustness in general output tracking (i.e., not restricted to periodic/repeated operations), and without complicity in modeling and controller design and/or online implementation. The proposed approach aims to address these challenges, by utilizing libraries of input-output elements constructed offline to online decompose the partially known (i.e., previewed) desired output trajectory and synthesize the control input. Iterative learning control techniques are used a priori to obtain the input elements each tracking the corresponding output elements accurately, and the Preisach modeling of hysteresis is employed to obtain the combination coefficients of the synthesized control input. An experimental implementation to high-speed, large-range nanopositioning using piezoelectric actuator is presented to demonstrate the efficiency and efficacy of the proposed approach in achieving SHDC.</description><subject>Control systems design</subject><subject>Data driven</subject><subject>Decomposition</subject><subject>decomposition control</subject><subject>High speed</subject><subject>Hysteresis</subject><subject>Iterative learning control</subject><subject>iterative learning control (ILC)</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Modelling</subject><subject>Nanopositioning</subject><subject>piezoelectric actuator</subject><subject>Piezoelectric actuators</subject><subject>simultaneous hysteresis and dynamics compensation</subject><subject>Synthesis</subject><subject>Tracking</subject><subject>Trajectory control</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1KwzAUx4soqNMHEG8CXmfmo0lb73RTJwwFN69Lmp7OzDWpSQruHXxoO6ZencM5_w_4JckFJWNKSXG9nCyWY0YYGXNCc1HIg-SECpFjkktxOOxEciwFl8fJaQhrQmgqWHaSfE9Bu7ZzwUTjLJ6D8tbYFb5TAWr00seuj2jplf4Yrig6tDBtv4nKgusDmm1DBA_BBKRsjaZbq1qjA5o4G73b3KCZWb3jRQdD1lz5FeBXZVeAnpV1f5273Psv1XYbOEuOGrUJcP47R8nbw_1yMsPzl8enye0cayZlxJDTVKeQp4LTOssapQijomEF1DIljGuhoSYcKskaSllFeF5pynRWFVVT1zkfJVf73M67zx5CLNeu93aoLJngRZFlA5tBRfcq7V0IHpqy86ZVfltSUu6glzvo5Q56-Qt98FzuPQYA_vXF8CQs5T8J1oCa</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Liu, Jiangbo</creator><creator>Wang, Jingren</creator><creator>Zou, Qingze</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3949-0751</orcidid><orcidid>https://orcid.org/0000-0001-5183-4409</orcidid></search><sort><creationdate>202107</creationdate><title>Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example</title><author>Liu, Jiangbo ; Wang, Jingren ; Zou, Qingze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-e814c4e84531d77faa0215f29ed64023c5ced03eb62f112b038bc12c7b9bfdd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control systems design</topic><topic>Data driven</topic><topic>Decomposition</topic><topic>decomposition control</topic><topic>High speed</topic><topic>Hysteresis</topic><topic>Iterative learning control</topic><topic>iterative learning control (ILC)</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Modelling</topic><topic>Nanopositioning</topic><topic>piezoelectric actuator</topic><topic>Piezoelectric actuators</topic><topic>simultaneous hysteresis and dynamics compensation</topic><topic>Synthesis</topic><topic>Tracking</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiangbo</creatorcontrib><creatorcontrib>Wang, Jingren</creatorcontrib><creatorcontrib>Zou, Qingze</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jiangbo</au><au>Wang, Jingren</au><au>Zou, Qingze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2021-07</date><risdate>2021</risdate><volume>29</volume><issue>4</issue><spage>1775</spage><epage>1782</epage><pages>1775-1782</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this brief, a decomposition-learning-based output tracking approach is proposed to compensate for both hysteresis and dynamics effects on output tracking of hysteresis systems such as smart actuators. Simultaneous hysteresis and dynamics control (SHDC) is needed to fully exploit smart or soft actuators/sensors for high-speed, large-range positioning/tracking. It remains still, however, as a challenge to achieve SHDC with both precision (performance) and robustness in general output tracking (i.e., not restricted to periodic/repeated operations), and without complicity in modeling and controller design and/or online implementation. The proposed approach aims to address these challenges, by utilizing libraries of input-output elements constructed offline to online decompose the partially known (i.e., previewed) desired output trajectory and synthesize the control input. Iterative learning control techniques are used a priori to obtain the input elements each tracking the corresponding output elements accurately, and the Preisach modeling of hysteresis is employed to obtain the combination coefficients of the synthesized control input. An experimental implementation to high-speed, large-range nanopositioning using piezoelectric actuator is presented to demonstrate the efficiency and efficacy of the proposed approach in achieving SHDC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2020.3018596</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3949-0751</orcidid><orcidid>https://orcid.org/0000-0001-5183-4409</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2021-07, Vol.29 (4), p.1775-1782
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_journals_2539977527
source IEEE Electronic Library (IEL)
subjects Control systems design
Data driven
Decomposition
decomposition control
High speed
Hysteresis
Iterative learning control
iterative learning control (ILC)
Iterative methods
Learning
Modelling
Nanopositioning
piezoelectric actuator
Piezoelectric actuators
simultaneous hysteresis and dynamics compensation
Synthesis
Tracking
Trajectory control
title Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition-Learning-Based%20Output%20Tracking%20to%20Simultaneous%20Hysteresis%20and%20Dynamics%20Control:%20High-Speed%20Large-Range%20Nanopositioning%20Example&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Liu,%20Jiangbo&rft.date=2021-07&rft.volume=29&rft.issue=4&rft.spage=1775&rft.epage=1782&rft.pages=1775-1782&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2020.3018596&rft_dat=%3Cproquest_RIE%3E2539977527%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539977527&rft_id=info:pmid/&rft_ieee_id=9185024&rfr_iscdi=true