Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example
In this brief, a decomposition-learning-based output tracking approach is proposed to compensate for both hysteresis and dynamics effects on output tracking of hysteresis systems such as smart actuators. Simultaneous hysteresis and dynamics control (SHDC) is needed to fully exploit smart or soft act...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2021-07, Vol.29 (4), p.1775-1782 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1782 |
---|---|
container_issue | 4 |
container_start_page | 1775 |
container_title | IEEE transactions on control systems technology |
container_volume | 29 |
creator | Liu, Jiangbo Wang, Jingren Zou, Qingze |
description | In this brief, a decomposition-learning-based output tracking approach is proposed to compensate for both hysteresis and dynamics effects on output tracking of hysteresis systems such as smart actuators. Simultaneous hysteresis and dynamics control (SHDC) is needed to fully exploit smart or soft actuators/sensors for high-speed, large-range positioning/tracking. It remains still, however, as a challenge to achieve SHDC with both precision (performance) and robustness in general output tracking (i.e., not restricted to periodic/repeated operations), and without complicity in modeling and controller design and/or online implementation. The proposed approach aims to address these challenges, by utilizing libraries of input-output elements constructed offline to online decompose the partially known (i.e., previewed) desired output trajectory and synthesize the control input. Iterative learning control techniques are used a priori to obtain the input elements each tracking the corresponding output elements accurately, and the Preisach modeling of hysteresis is employed to obtain the combination coefficients of the synthesized control input. An experimental implementation to high-speed, large-range nanopositioning using piezoelectric actuator is presented to demonstrate the efficiency and efficacy of the proposed approach in achieving SHDC. |
doi_str_mv | 10.1109/TCST.2020.3018596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2539977527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9185024</ieee_id><sourcerecordid>2539977527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-e814c4e84531d77faa0215f29ed64023c5ced03eb62f112b038bc12c7b9bfdd83</originalsourceid><addsrcrecordid>eNo9kN1KwzAUx4soqNMHEG8CXmfmo0lb73RTJwwFN69Lmp7OzDWpSQruHXxoO6ZencM5_w_4JckFJWNKSXG9nCyWY0YYGXNCc1HIg-SECpFjkktxOOxEciwFl8fJaQhrQmgqWHaSfE9Bu7ZzwUTjLJ6D8tbYFb5TAWr00seuj2jplf4Yrig6tDBtv4nKgusDmm1DBA_BBKRsjaZbq1qjA5o4G73b3KCZWb3jRQdD1lz5FeBXZVeAnpV1f5273Psv1XYbOEuOGrUJcP47R8nbw_1yMsPzl8enye0cayZlxJDTVKeQp4LTOssapQijomEF1DIljGuhoSYcKskaSllFeF5pynRWFVVT1zkfJVf73M67zx5CLNeu93aoLJngRZFlA5tBRfcq7V0IHpqy86ZVfltSUu6glzvo5Q56-Qt98FzuPQYA_vXF8CQs5T8J1oCa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539977527</pqid></control><display><type>article</type><title>Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jiangbo ; Wang, Jingren ; Zou, Qingze</creator><creatorcontrib>Liu, Jiangbo ; Wang, Jingren ; Zou, Qingze</creatorcontrib><description>In this brief, a decomposition-learning-based output tracking approach is proposed to compensate for both hysteresis and dynamics effects on output tracking of hysteresis systems such as smart actuators. Simultaneous hysteresis and dynamics control (SHDC) is needed to fully exploit smart or soft actuators/sensors for high-speed, large-range positioning/tracking. It remains still, however, as a challenge to achieve SHDC with both precision (performance) and robustness in general output tracking (i.e., not restricted to periodic/repeated operations), and without complicity in modeling and controller design and/or online implementation. The proposed approach aims to address these challenges, by utilizing libraries of input-output elements constructed offline to online decompose the partially known (i.e., previewed) desired output trajectory and synthesize the control input. Iterative learning control techniques are used a priori to obtain the input elements each tracking the corresponding output elements accurately, and the Preisach modeling of hysteresis is employed to obtain the combination coefficients of the synthesized control input. An experimental implementation to high-speed, large-range nanopositioning using piezoelectric actuator is presented to demonstrate the efficiency and efficacy of the proposed approach in achieving SHDC.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2020.3018596</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems design ; Data driven ; Decomposition ; decomposition control ; High speed ; Hysteresis ; Iterative learning control ; iterative learning control (ILC) ; Iterative methods ; Learning ; Modelling ; Nanopositioning ; piezoelectric actuator ; Piezoelectric actuators ; simultaneous hysteresis and dynamics compensation ; Synthesis ; Tracking ; Trajectory control</subject><ispartof>IEEE transactions on control systems technology, 2021-07, Vol.29 (4), p.1775-1782</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-e814c4e84531d77faa0215f29ed64023c5ced03eb62f112b038bc12c7b9bfdd83</citedby><cites>FETCH-LOGICAL-c266t-e814c4e84531d77faa0215f29ed64023c5ced03eb62f112b038bc12c7b9bfdd83</cites><orcidid>0000-0002-3949-0751 ; 0000-0001-5183-4409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9185024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9185024$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jiangbo</creatorcontrib><creatorcontrib>Wang, Jingren</creatorcontrib><creatorcontrib>Zou, Qingze</creatorcontrib><title>Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this brief, a decomposition-learning-based output tracking approach is proposed to compensate for both hysteresis and dynamics effects on output tracking of hysteresis systems such as smart actuators. Simultaneous hysteresis and dynamics control (SHDC) is needed to fully exploit smart or soft actuators/sensors for high-speed, large-range positioning/tracking. It remains still, however, as a challenge to achieve SHDC with both precision (performance) and robustness in general output tracking (i.e., not restricted to periodic/repeated operations), and without complicity in modeling and controller design and/or online implementation. The proposed approach aims to address these challenges, by utilizing libraries of input-output elements constructed offline to online decompose the partially known (i.e., previewed) desired output trajectory and synthesize the control input. Iterative learning control techniques are used a priori to obtain the input elements each tracking the corresponding output elements accurately, and the Preisach modeling of hysteresis is employed to obtain the combination coefficients of the synthesized control input. An experimental implementation to high-speed, large-range nanopositioning using piezoelectric actuator is presented to demonstrate the efficiency and efficacy of the proposed approach in achieving SHDC.</description><subject>Control systems design</subject><subject>Data driven</subject><subject>Decomposition</subject><subject>decomposition control</subject><subject>High speed</subject><subject>Hysteresis</subject><subject>Iterative learning control</subject><subject>iterative learning control (ILC)</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Modelling</subject><subject>Nanopositioning</subject><subject>piezoelectric actuator</subject><subject>Piezoelectric actuators</subject><subject>simultaneous hysteresis and dynamics compensation</subject><subject>Synthesis</subject><subject>Tracking</subject><subject>Trajectory control</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1KwzAUx4soqNMHEG8CXmfmo0lb73RTJwwFN69Lmp7OzDWpSQruHXxoO6ZencM5_w_4JckFJWNKSXG9nCyWY0YYGXNCc1HIg-SECpFjkktxOOxEciwFl8fJaQhrQmgqWHaSfE9Bu7ZzwUTjLJ6D8tbYFb5TAWr00seuj2jplf4Yrig6tDBtv4nKgusDmm1DBA_BBKRsjaZbq1qjA5o4G73b3KCZWb3jRQdD1lz5FeBXZVeAnpV1f5273Psv1XYbOEuOGrUJcP47R8nbw_1yMsPzl8enye0cayZlxJDTVKeQp4LTOssapQijomEF1DIljGuhoSYcKskaSllFeF5pynRWFVVT1zkfJVf73M67zx5CLNeu93aoLJngRZFlA5tBRfcq7V0IHpqy86ZVfltSUu6glzvo5Q56-Qt98FzuPQYA_vXF8CQs5T8J1oCa</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Liu, Jiangbo</creator><creator>Wang, Jingren</creator><creator>Zou, Qingze</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3949-0751</orcidid><orcidid>https://orcid.org/0000-0001-5183-4409</orcidid></search><sort><creationdate>202107</creationdate><title>Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example</title><author>Liu, Jiangbo ; Wang, Jingren ; Zou, Qingze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-e814c4e84531d77faa0215f29ed64023c5ced03eb62f112b038bc12c7b9bfdd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control systems design</topic><topic>Data driven</topic><topic>Decomposition</topic><topic>decomposition control</topic><topic>High speed</topic><topic>Hysteresis</topic><topic>Iterative learning control</topic><topic>iterative learning control (ILC)</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Modelling</topic><topic>Nanopositioning</topic><topic>piezoelectric actuator</topic><topic>Piezoelectric actuators</topic><topic>simultaneous hysteresis and dynamics compensation</topic><topic>Synthesis</topic><topic>Tracking</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiangbo</creatorcontrib><creatorcontrib>Wang, Jingren</creatorcontrib><creatorcontrib>Zou, Qingze</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jiangbo</au><au>Wang, Jingren</au><au>Zou, Qingze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2021-07</date><risdate>2021</risdate><volume>29</volume><issue>4</issue><spage>1775</spage><epage>1782</epage><pages>1775-1782</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this brief, a decomposition-learning-based output tracking approach is proposed to compensate for both hysteresis and dynamics effects on output tracking of hysteresis systems such as smart actuators. Simultaneous hysteresis and dynamics control (SHDC) is needed to fully exploit smart or soft actuators/sensors for high-speed, large-range positioning/tracking. It remains still, however, as a challenge to achieve SHDC with both precision (performance) and robustness in general output tracking (i.e., not restricted to periodic/repeated operations), and without complicity in modeling and controller design and/or online implementation. The proposed approach aims to address these challenges, by utilizing libraries of input-output elements constructed offline to online decompose the partially known (i.e., previewed) desired output trajectory and synthesize the control input. Iterative learning control techniques are used a priori to obtain the input elements each tracking the corresponding output elements accurately, and the Preisach modeling of hysteresis is employed to obtain the combination coefficients of the synthesized control input. An experimental implementation to high-speed, large-range nanopositioning using piezoelectric actuator is presented to demonstrate the efficiency and efficacy of the proposed approach in achieving SHDC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2020.3018596</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3949-0751</orcidid><orcidid>https://orcid.org/0000-0001-5183-4409</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2021-07, Vol.29 (4), p.1775-1782 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_journals_2539977527 |
source | IEEE Electronic Library (IEL) |
subjects | Control systems design Data driven Decomposition decomposition control High speed Hysteresis Iterative learning control iterative learning control (ILC) Iterative methods Learning Modelling Nanopositioning piezoelectric actuator Piezoelectric actuators simultaneous hysteresis and dynamics compensation Synthesis Tracking Trajectory control |
title | Decomposition-Learning-Based Output Tracking to Simultaneous Hysteresis and Dynamics Control: High-Speed Large-Range Nanopositioning Example |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition-Learning-Based%20Output%20Tracking%20to%20Simultaneous%20Hysteresis%20and%20Dynamics%20Control:%20High-Speed%20Large-Range%20Nanopositioning%20Example&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Liu,%20Jiangbo&rft.date=2021-07&rft.volume=29&rft.issue=4&rft.spage=1775&rft.epage=1782&rft.pages=1775-1782&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2020.3018596&rft_dat=%3Cproquest_RIE%3E2539977527%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539977527&rft_id=info:pmid/&rft_ieee_id=9185024&rfr_iscdi=true |