Effective radiative cooling with ZrO2/PDMS reflective coating
Radiative cooling (RC) has attracted growing attention in recent years since it is a terrestrial object that radiates heat to outer space through the atmospheric window while maintaining zero-energy consumption. It emits or absorbs radiation only in the atmospheric window (8–13 μm) and suppress it b...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2021-08, Vol.229, p.111129, Article 111129 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111129 |
container_title | Solar energy materials and solar cells |
container_volume | 229 |
creator | Zhang, Yubo Tan, Xinyu Qi, Guiguang Yang, Xiongbo Hu, Die Fyffe, Pheobe Chen, Xiaobo |
description | Radiative cooling (RC) has attracted growing attention in recent years since it is a terrestrial object that radiates heat to outer space through the atmospheric window while maintaining zero-energy consumption. It emits or absorbs radiation only in the atmospheric window (8–13 μm) and suppress it beyond this band. In this paper, we present a radiative cooling coating composed of a zirconia (ZrO2) embedded polydimethylsiloxane (PDMS) hybrid ZrO2/PDMS coating. The influences on radiative cooling by particle sizes and volume fractions and film thicknesses are evaluated via Mie scatter theory combined with Monte Carlo ray-tracing method. The ZrO2/PDMS coatingdis plays a surface temperature drop 10.9 °C at the solar intensity of 895 W/m2, much better than the commercial white paint (4.4 °C). As it performs efficiently above ambient temperature and is easy to manufacture this coating, this coating may have some promising future for potential large-scale application of radiative cooling technology on energy-saving buildings.
•Mie scatter theory combined with Monte Carlo simulation is used to analyse the optical properties of particles (ZrO2) embedded into polymers (PDMS).•Preparation of coating is simple.•Reflectivity of coating (300–1350 nm) is about 93.55% and emissivity (2–25 μm) reaches 92.25%.•Temperature drops of 10.9 °C is achieved under the solar intensity of about 895 W/m2.•Temperature inside the house model with the coating is about 4.2 °C lower than that of commercial paints. |
doi_str_mv | 10.1016/j.solmat.2021.111129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539940141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821001719</els_id><sourcerecordid>2539940141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-9b80e03d0c5c9ed4ad090a60b75d9d8812970cc4ca0539b32d4a65ac47be27423</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywisU47fuThBUiolIdUVCRgw8ZybKc4SuNip0X8PS7pmtnMLM6duXMRusQwwYDzaTMJrl3LfkKA4AmORfgRGuGy4CmlvDxGI-CkSIGw8hSdhdAAAMkpG6HreV0b1dudSbzUVv5NyrnWdqvk2_afyYdfkunL3fNr4k3dHljlItmtztFJLdtgLg59jN7v52-zx3SxfHia3S5SRSnrU16VYIBqUJniRjOpgYPMoSoyzXVZRrsFKMWUhIzyipKI5JlUrKgMKRihY3Q17N1497U1oReN2_ounhQkKjgDzHCk2EAp70KIbsXG27X0PwKD2AclGjEEJfZBiSGoKLsZZCZ-sLPGi6Cs6ZTR1sd3hXb2_wW_Wntx1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539940141</pqid></control><display><type>article</type><title>Effective radiative cooling with ZrO2/PDMS reflective coating</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Yubo ; Tan, Xinyu ; Qi, Guiguang ; Yang, Xiongbo ; Hu, Die ; Fyffe, Pheobe ; Chen, Xiaobo</creator><creatorcontrib>Zhang, Yubo ; Tan, Xinyu ; Qi, Guiguang ; Yang, Xiongbo ; Hu, Die ; Fyffe, Pheobe ; Chen, Xiaobo</creatorcontrib><description>Radiative cooling (RC) has attracted growing attention in recent years since it is a terrestrial object that radiates heat to outer space through the atmospheric window while maintaining zero-energy consumption. It emits or absorbs radiation only in the atmospheric window (8–13 μm) and suppress it beyond this band. In this paper, we present a radiative cooling coating composed of a zirconia (ZrO2) embedded polydimethylsiloxane (PDMS) hybrid ZrO2/PDMS coating. The influences on radiative cooling by particle sizes and volume fractions and film thicknesses are evaluated via Mie scatter theory combined with Monte Carlo ray-tracing method. The ZrO2/PDMS coatingdis plays a surface temperature drop 10.9 °C at the solar intensity of 895 W/m2, much better than the commercial white paint (4.4 °C). As it performs efficiently above ambient temperature and is easy to manufacture this coating, this coating may have some promising future for potential large-scale application of radiative cooling technology on energy-saving buildings.
•Mie scatter theory combined with Monte Carlo simulation is used to analyse the optical properties of particles (ZrO2) embedded into polymers (PDMS).•Preparation of coating is simple.•Reflectivity of coating (300–1350 nm) is about 93.55% and emissivity (2–25 μm) reaches 92.25%.•Temperature drops of 10.9 °C is achieved under the solar intensity of about 895 W/m2.•Temperature inside the house model with the coating is about 4.2 °C lower than that of commercial paints.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111129</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ambient temperature ; Atmospheric windows ; Broadband emitter ; Coating ; Coatings ; Cooling ; Energy conservation ; Energy consumption ; Mie scattering ; Mie theory ; Monte Carlo simulation ; PDMS ; Polydimethylsiloxane ; Radiation ; Radiative cooling ; Ray tracing ; Temperature ; Terrestrial environments ; Thickness ; Zirconia ; Zirconium dioxide ; ZrO2</subject><ispartof>Solar energy materials and solar cells, 2021-08, Vol.229, p.111129, Article 111129</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Aug 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-9b80e03d0c5c9ed4ad090a60b75d9d8812970cc4ca0539b32d4a65ac47be27423</citedby><cites>FETCH-LOGICAL-c334t-9b80e03d0c5c9ed4ad090a60b75d9d8812970cc4ca0539b32d4a65ac47be27423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024821001719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zhang, Yubo</creatorcontrib><creatorcontrib>Tan, Xinyu</creatorcontrib><creatorcontrib>Qi, Guiguang</creatorcontrib><creatorcontrib>Yang, Xiongbo</creatorcontrib><creatorcontrib>Hu, Die</creatorcontrib><creatorcontrib>Fyffe, Pheobe</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><title>Effective radiative cooling with ZrO2/PDMS reflective coating</title><title>Solar energy materials and solar cells</title><description>Radiative cooling (RC) has attracted growing attention in recent years since it is a terrestrial object that radiates heat to outer space through the atmospheric window while maintaining zero-energy consumption. It emits or absorbs radiation only in the atmospheric window (8–13 μm) and suppress it beyond this band. In this paper, we present a radiative cooling coating composed of a zirconia (ZrO2) embedded polydimethylsiloxane (PDMS) hybrid ZrO2/PDMS coating. The influences on radiative cooling by particle sizes and volume fractions and film thicknesses are evaluated via Mie scatter theory combined with Monte Carlo ray-tracing method. The ZrO2/PDMS coatingdis plays a surface temperature drop 10.9 °C at the solar intensity of 895 W/m2, much better than the commercial white paint (4.4 °C). As it performs efficiently above ambient temperature and is easy to manufacture this coating, this coating may have some promising future for potential large-scale application of radiative cooling technology on energy-saving buildings.
•Mie scatter theory combined with Monte Carlo simulation is used to analyse the optical properties of particles (ZrO2) embedded into polymers (PDMS).•Preparation of coating is simple.•Reflectivity of coating (300–1350 nm) is about 93.55% and emissivity (2–25 μm) reaches 92.25%.•Temperature drops of 10.9 °C is achieved under the solar intensity of about 895 W/m2.•Temperature inside the house model with the coating is about 4.2 °C lower than that of commercial paints.</description><subject>Ambient temperature</subject><subject>Atmospheric windows</subject><subject>Broadband emitter</subject><subject>Coating</subject><subject>Coatings</subject><subject>Cooling</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Mie scattering</subject><subject>Mie theory</subject><subject>Monte Carlo simulation</subject><subject>PDMS</subject><subject>Polydimethylsiloxane</subject><subject>Radiation</subject><subject>Radiative cooling</subject><subject>Ray tracing</subject><subject>Temperature</subject><subject>Terrestrial environments</subject><subject>Thickness</subject><subject>Zirconia</subject><subject>Zirconium dioxide</subject><subject>ZrO2</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywisU47fuThBUiolIdUVCRgw8ZybKc4SuNip0X8PS7pmtnMLM6duXMRusQwwYDzaTMJrl3LfkKA4AmORfgRGuGy4CmlvDxGI-CkSIGw8hSdhdAAAMkpG6HreV0b1dudSbzUVv5NyrnWdqvk2_afyYdfkunL3fNr4k3dHljlItmtztFJLdtgLg59jN7v52-zx3SxfHia3S5SRSnrU16VYIBqUJniRjOpgYPMoSoyzXVZRrsFKMWUhIzyipKI5JlUrKgMKRihY3Q17N1497U1oReN2_ounhQkKjgDzHCk2EAp70KIbsXG27X0PwKD2AclGjEEJfZBiSGoKLsZZCZ-sLPGi6Cs6ZTR1sd3hXb2_wW_Wntx1Q</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Zhang, Yubo</creator><creator>Tan, Xinyu</creator><creator>Qi, Guiguang</creator><creator>Yang, Xiongbo</creator><creator>Hu, Die</creator><creator>Fyffe, Pheobe</creator><creator>Chen, Xiaobo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210815</creationdate><title>Effective radiative cooling with ZrO2/PDMS reflective coating</title><author>Zhang, Yubo ; Tan, Xinyu ; Qi, Guiguang ; Yang, Xiongbo ; Hu, Die ; Fyffe, Pheobe ; Chen, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-9b80e03d0c5c9ed4ad090a60b75d9d8812970cc4ca0539b32d4a65ac47be27423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ambient temperature</topic><topic>Atmospheric windows</topic><topic>Broadband emitter</topic><topic>Coating</topic><topic>Coatings</topic><topic>Cooling</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Mie scattering</topic><topic>Mie theory</topic><topic>Monte Carlo simulation</topic><topic>PDMS</topic><topic>Polydimethylsiloxane</topic><topic>Radiation</topic><topic>Radiative cooling</topic><topic>Ray tracing</topic><topic>Temperature</topic><topic>Terrestrial environments</topic><topic>Thickness</topic><topic>Zirconia</topic><topic>Zirconium dioxide</topic><topic>ZrO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yubo</creatorcontrib><creatorcontrib>Tan, Xinyu</creatorcontrib><creatorcontrib>Qi, Guiguang</creatorcontrib><creatorcontrib>Yang, Xiongbo</creatorcontrib><creatorcontrib>Hu, Die</creatorcontrib><creatorcontrib>Fyffe, Pheobe</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yubo</au><au>Tan, Xinyu</au><au>Qi, Guiguang</au><au>Yang, Xiongbo</au><au>Hu, Die</au><au>Fyffe, Pheobe</au><au>Chen, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective radiative cooling with ZrO2/PDMS reflective coating</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>229</volume><spage>111129</spage><pages>111129-</pages><artnum>111129</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Radiative cooling (RC) has attracted growing attention in recent years since it is a terrestrial object that radiates heat to outer space through the atmospheric window while maintaining zero-energy consumption. It emits or absorbs radiation only in the atmospheric window (8–13 μm) and suppress it beyond this band. In this paper, we present a radiative cooling coating composed of a zirconia (ZrO2) embedded polydimethylsiloxane (PDMS) hybrid ZrO2/PDMS coating. The influences on radiative cooling by particle sizes and volume fractions and film thicknesses are evaluated via Mie scatter theory combined with Monte Carlo ray-tracing method. The ZrO2/PDMS coatingdis plays a surface temperature drop 10.9 °C at the solar intensity of 895 W/m2, much better than the commercial white paint (4.4 °C). As it performs efficiently above ambient temperature and is easy to manufacture this coating, this coating may have some promising future for potential large-scale application of radiative cooling technology on energy-saving buildings.
•Mie scatter theory combined with Monte Carlo simulation is used to analyse the optical properties of particles (ZrO2) embedded into polymers (PDMS).•Preparation of coating is simple.•Reflectivity of coating (300–1350 nm) is about 93.55% and emissivity (2–25 μm) reaches 92.25%.•Temperature drops of 10.9 °C is achieved under the solar intensity of about 895 W/m2.•Temperature inside the house model with the coating is about 4.2 °C lower than that of commercial paints.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111129</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2021-08, Vol.229, p.111129, Article 111129 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2539940141 |
source | Elsevier ScienceDirect Journals |
subjects | Ambient temperature Atmospheric windows Broadband emitter Coating Coatings Cooling Energy conservation Energy consumption Mie scattering Mie theory Monte Carlo simulation PDMS Polydimethylsiloxane Radiation Radiative cooling Ray tracing Temperature Terrestrial environments Thickness Zirconia Zirconium dioxide ZrO2 |
title | Effective radiative cooling with ZrO2/PDMS reflective coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20radiative%20cooling%20with%20ZrO2/PDMS%20reflective%20coating&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Zhang,%20Yubo&rft.date=2021-08-15&rft.volume=229&rft.spage=111129&rft.pages=111129-&rft.artnum=111129&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111129&rft_dat=%3Cproquest_cross%3E2539940141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539940141&rft_id=info:pmid/&rft_els_id=S0927024821001719&rfr_iscdi=true |