Effective radiative cooling with ZrO2/PDMS reflective coating

Radiative cooling (RC) has attracted growing attention in recent years since it is a terrestrial object that radiates heat to outer space through the atmospheric window while maintaining zero-energy consumption. It emits or absorbs radiation only in the atmospheric window (8–13 μm) and suppress it b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2021-08, Vol.229, p.111129, Article 111129
Hauptverfasser: Zhang, Yubo, Tan, Xinyu, Qi, Guiguang, Yang, Xiongbo, Hu, Die, Fyffe, Pheobe, Chen, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111129
container_title Solar energy materials and solar cells
container_volume 229
creator Zhang, Yubo
Tan, Xinyu
Qi, Guiguang
Yang, Xiongbo
Hu, Die
Fyffe, Pheobe
Chen, Xiaobo
description Radiative cooling (RC) has attracted growing attention in recent years since it is a terrestrial object that radiates heat to outer space through the atmospheric window while maintaining zero-energy consumption. It emits or absorbs radiation only in the atmospheric window (8–13 μm) and suppress it beyond this band. In this paper, we present a radiative cooling coating composed of a zirconia (ZrO2) embedded polydimethylsiloxane (PDMS) hybrid ZrO2/PDMS coating. The influences on radiative cooling by particle sizes and volume fractions and film thicknesses are evaluated via Mie scatter theory combined with Monte Carlo ray-tracing method. The ZrO2/PDMS coatingdis plays a surface temperature drop 10.9 °C at the solar intensity of 895 W/m2, much better than the commercial white paint (4.4 °C). As it performs efficiently above ambient temperature and is easy to manufacture this coating, this coating may have some promising future for potential large-scale application of radiative cooling technology on energy-saving buildings. •Mie scatter theory combined with Monte Carlo simulation is used to analyse the optical properties of particles (ZrO2) embedded into polymers (PDMS).•Preparation of coating is simple.•Reflectivity of coating (300–1350 nm) is about 93.55% and emissivity (2–25 μm) reaches 92.25%.•Temperature drops of 10.9 °C is achieved under the solar intensity of about 895 W/m2.•Temperature inside the house model with the coating is about 4.2 °C lower than that of commercial paints.
doi_str_mv 10.1016/j.solmat.2021.111129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539940141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821001719</els_id><sourcerecordid>2539940141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-9b80e03d0c5c9ed4ad090a60b75d9d8812970cc4ca0539b32d4a65ac47be27423</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywisU47fuThBUiolIdUVCRgw8ZybKc4SuNip0X8PS7pmtnMLM6duXMRusQwwYDzaTMJrl3LfkKA4AmORfgRGuGy4CmlvDxGI-CkSIGw8hSdhdAAAMkpG6HreV0b1dudSbzUVv5NyrnWdqvk2_afyYdfkunL3fNr4k3dHljlItmtztFJLdtgLg59jN7v52-zx3SxfHia3S5SRSnrU16VYIBqUJniRjOpgYPMoSoyzXVZRrsFKMWUhIzyipKI5JlUrKgMKRihY3Q17N1497U1oReN2_ounhQkKjgDzHCk2EAp70KIbsXG27X0PwKD2AclGjEEJfZBiSGoKLsZZCZ-sLPGi6Cs6ZTR1sd3hXb2_wW_Wntx1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539940141</pqid></control><display><type>article</type><title>Effective radiative cooling with ZrO2/PDMS reflective coating</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Yubo ; Tan, Xinyu ; Qi, Guiguang ; Yang, Xiongbo ; Hu, Die ; Fyffe, Pheobe ; Chen, Xiaobo</creator><creatorcontrib>Zhang, Yubo ; Tan, Xinyu ; Qi, Guiguang ; Yang, Xiongbo ; Hu, Die ; Fyffe, Pheobe ; Chen, Xiaobo</creatorcontrib><description>Radiative cooling (RC) has attracted growing attention in recent years since it is a terrestrial object that radiates heat to outer space through the atmospheric window while maintaining zero-energy consumption. It emits or absorbs radiation only in the atmospheric window (8–13 μm) and suppress it beyond this band. In this paper, we present a radiative cooling coating composed of a zirconia (ZrO2) embedded polydimethylsiloxane (PDMS) hybrid ZrO2/PDMS coating. The influences on radiative cooling by particle sizes and volume fractions and film thicknesses are evaluated via Mie scatter theory combined with Monte Carlo ray-tracing method. The ZrO2/PDMS coatingdis plays a surface temperature drop 10.9 °C at the solar intensity of 895 W/m2, much better than the commercial white paint (4.4 °C). As it performs efficiently above ambient temperature and is easy to manufacture this coating, this coating may have some promising future for potential large-scale application of radiative cooling technology on energy-saving buildings. •Mie scatter theory combined with Monte Carlo simulation is used to analyse the optical properties of particles (ZrO2) embedded into polymers (PDMS).•Preparation of coating is simple.•Reflectivity of coating (300–1350 nm) is about 93.55% and emissivity (2–25 μm) reaches 92.25%.•Temperature drops of 10.9 °C is achieved under the solar intensity of about 895 W/m2.•Temperature inside the house model with the coating is about 4.2 °C lower than that of commercial paints.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111129</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ambient temperature ; Atmospheric windows ; Broadband emitter ; Coating ; Coatings ; Cooling ; Energy conservation ; Energy consumption ; Mie scattering ; Mie theory ; Monte Carlo simulation ; PDMS ; Polydimethylsiloxane ; Radiation ; Radiative cooling ; Ray tracing ; Temperature ; Terrestrial environments ; Thickness ; Zirconia ; Zirconium dioxide ; ZrO2</subject><ispartof>Solar energy materials and solar cells, 2021-08, Vol.229, p.111129, Article 111129</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Aug 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-9b80e03d0c5c9ed4ad090a60b75d9d8812970cc4ca0539b32d4a65ac47be27423</citedby><cites>FETCH-LOGICAL-c334t-9b80e03d0c5c9ed4ad090a60b75d9d8812970cc4ca0539b32d4a65ac47be27423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024821001719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zhang, Yubo</creatorcontrib><creatorcontrib>Tan, Xinyu</creatorcontrib><creatorcontrib>Qi, Guiguang</creatorcontrib><creatorcontrib>Yang, Xiongbo</creatorcontrib><creatorcontrib>Hu, Die</creatorcontrib><creatorcontrib>Fyffe, Pheobe</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><title>Effective radiative cooling with ZrO2/PDMS reflective coating</title><title>Solar energy materials and solar cells</title><description>Radiative cooling (RC) has attracted growing attention in recent years since it is a terrestrial object that radiates heat to outer space through the atmospheric window while maintaining zero-energy consumption. It emits or absorbs radiation only in the atmospheric window (8–13 μm) and suppress it beyond this band. In this paper, we present a radiative cooling coating composed of a zirconia (ZrO2) embedded polydimethylsiloxane (PDMS) hybrid ZrO2/PDMS coating. The influences on radiative cooling by particle sizes and volume fractions and film thicknesses are evaluated via Mie scatter theory combined with Monte Carlo ray-tracing method. The ZrO2/PDMS coatingdis plays a surface temperature drop 10.9 °C at the solar intensity of 895 W/m2, much better than the commercial white paint (4.4 °C). As it performs efficiently above ambient temperature and is easy to manufacture this coating, this coating may have some promising future for potential large-scale application of radiative cooling technology on energy-saving buildings. •Mie scatter theory combined with Monte Carlo simulation is used to analyse the optical properties of particles (ZrO2) embedded into polymers (PDMS).•Preparation of coating is simple.•Reflectivity of coating (300–1350 nm) is about 93.55% and emissivity (2–25 μm) reaches 92.25%.•Temperature drops of 10.9 °C is achieved under the solar intensity of about 895 W/m2.•Temperature inside the house model with the coating is about 4.2 °C lower than that of commercial paints.</description><subject>Ambient temperature</subject><subject>Atmospheric windows</subject><subject>Broadband emitter</subject><subject>Coating</subject><subject>Coatings</subject><subject>Cooling</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Mie scattering</subject><subject>Mie theory</subject><subject>Monte Carlo simulation</subject><subject>PDMS</subject><subject>Polydimethylsiloxane</subject><subject>Radiation</subject><subject>Radiative cooling</subject><subject>Ray tracing</subject><subject>Temperature</subject><subject>Terrestrial environments</subject><subject>Thickness</subject><subject>Zirconia</subject><subject>Zirconium dioxide</subject><subject>ZrO2</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywisU47fuThBUiolIdUVCRgw8ZybKc4SuNip0X8PS7pmtnMLM6duXMRusQwwYDzaTMJrl3LfkKA4AmORfgRGuGy4CmlvDxGI-CkSIGw8hSdhdAAAMkpG6HreV0b1dudSbzUVv5NyrnWdqvk2_afyYdfkunL3fNr4k3dHljlItmtztFJLdtgLg59jN7v52-zx3SxfHia3S5SRSnrU16VYIBqUJniRjOpgYPMoSoyzXVZRrsFKMWUhIzyipKI5JlUrKgMKRihY3Q17N1497U1oReN2_ounhQkKjgDzHCk2EAp70KIbsXG27X0PwKD2AclGjEEJfZBiSGoKLsZZCZ-sLPGi6Cs6ZTR1sd3hXb2_wW_Wntx1Q</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Zhang, Yubo</creator><creator>Tan, Xinyu</creator><creator>Qi, Guiguang</creator><creator>Yang, Xiongbo</creator><creator>Hu, Die</creator><creator>Fyffe, Pheobe</creator><creator>Chen, Xiaobo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210815</creationdate><title>Effective radiative cooling with ZrO2/PDMS reflective coating</title><author>Zhang, Yubo ; Tan, Xinyu ; Qi, Guiguang ; Yang, Xiongbo ; Hu, Die ; Fyffe, Pheobe ; Chen, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-9b80e03d0c5c9ed4ad090a60b75d9d8812970cc4ca0539b32d4a65ac47be27423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ambient temperature</topic><topic>Atmospheric windows</topic><topic>Broadband emitter</topic><topic>Coating</topic><topic>Coatings</topic><topic>Cooling</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Mie scattering</topic><topic>Mie theory</topic><topic>Monte Carlo simulation</topic><topic>PDMS</topic><topic>Polydimethylsiloxane</topic><topic>Radiation</topic><topic>Radiative cooling</topic><topic>Ray tracing</topic><topic>Temperature</topic><topic>Terrestrial environments</topic><topic>Thickness</topic><topic>Zirconia</topic><topic>Zirconium dioxide</topic><topic>ZrO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yubo</creatorcontrib><creatorcontrib>Tan, Xinyu</creatorcontrib><creatorcontrib>Qi, Guiguang</creatorcontrib><creatorcontrib>Yang, Xiongbo</creatorcontrib><creatorcontrib>Hu, Die</creatorcontrib><creatorcontrib>Fyffe, Pheobe</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yubo</au><au>Tan, Xinyu</au><au>Qi, Guiguang</au><au>Yang, Xiongbo</au><au>Hu, Die</au><au>Fyffe, Pheobe</au><au>Chen, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective radiative cooling with ZrO2/PDMS reflective coating</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>229</volume><spage>111129</spage><pages>111129-</pages><artnum>111129</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Radiative cooling (RC) has attracted growing attention in recent years since it is a terrestrial object that radiates heat to outer space through the atmospheric window while maintaining zero-energy consumption. It emits or absorbs radiation only in the atmospheric window (8–13 μm) and suppress it beyond this band. In this paper, we present a radiative cooling coating composed of a zirconia (ZrO2) embedded polydimethylsiloxane (PDMS) hybrid ZrO2/PDMS coating. The influences on radiative cooling by particle sizes and volume fractions and film thicknesses are evaluated via Mie scatter theory combined with Monte Carlo ray-tracing method. The ZrO2/PDMS coatingdis plays a surface temperature drop 10.9 °C at the solar intensity of 895 W/m2, much better than the commercial white paint (4.4 °C). As it performs efficiently above ambient temperature and is easy to manufacture this coating, this coating may have some promising future for potential large-scale application of radiative cooling technology on energy-saving buildings. •Mie scatter theory combined with Monte Carlo simulation is used to analyse the optical properties of particles (ZrO2) embedded into polymers (PDMS).•Preparation of coating is simple.•Reflectivity of coating (300–1350 nm) is about 93.55% and emissivity (2–25 μm) reaches 92.25%.•Temperature drops of 10.9 °C is achieved under the solar intensity of about 895 W/m2.•Temperature inside the house model with the coating is about 4.2 °C lower than that of commercial paints.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111129</doi></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2021-08, Vol.229, p.111129, Article 111129
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2539940141
source Elsevier ScienceDirect Journals
subjects Ambient temperature
Atmospheric windows
Broadband emitter
Coating
Coatings
Cooling
Energy conservation
Energy consumption
Mie scattering
Mie theory
Monte Carlo simulation
PDMS
Polydimethylsiloxane
Radiation
Radiative cooling
Ray tracing
Temperature
Terrestrial environments
Thickness
Zirconia
Zirconium dioxide
ZrO2
title Effective radiative cooling with ZrO2/PDMS reflective coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20radiative%20cooling%20with%20ZrO2/PDMS%20reflective%20coating&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Zhang,%20Yubo&rft.date=2021-08-15&rft.volume=229&rft.spage=111129&rft.pages=111129-&rft.artnum=111129&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111129&rft_dat=%3Cproquest_cross%3E2539940141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539940141&rft_id=info:pmid/&rft_els_id=S0927024821001719&rfr_iscdi=true