Noncanonical open reading frames encode functional proteins essential for cancer cell survival
Although genomic analyses predict many noncanonical open reading frames (ORFs) in the human genome, it is unclear whether they encode biologically active proteins. Here we experimentally interrogated 553 candidates selected from noncanonical ORF datasets. Of these, 57 induced viability defects when...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2021-06, Vol.39 (6), p.697-704 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 704 |
---|---|
container_issue | 6 |
container_start_page | 697 |
container_title | Nature biotechnology |
container_volume | 39 |
creator | Prensner, John R. Enache, Oana M. Luria, Victor Krug, Karsten Clauser, Karl R. Dempster, Joshua M. Karger, Amir Wang, Li Stumbraite, Karolina Wang, Vickie M. Botta, Ginevra Lyons, Nicholas J. Goodale, Amy Kalani, Zohra Fritchman, Briana Brown, Adam Alan, Douglas Green, Thomas Yang, Xiaoping Jaffe, Jacob D. Roth, Jennifer A. Piccioni, Federica Kirschner, Marc W. Ji, Zhe Root, David E. Golub, Todd R. |
description | Although genomic analyses predict many noncanonical open reading frames (ORFs) in the human genome, it is unclear whether they encode biologically active proteins. Here we experimentally interrogated 553 candidates selected from noncanonical ORF datasets. Of these, 57 induced viability defects when knocked out in human cancer cell lines. Following ectopic expression, 257 showed evidence of protein expression and 401 induced gene expression changes. Clustered regularly interspaced short palindromic repeat (CRISPR) tiling and start codon mutagenesis indicated that their biological effects required translation as opposed to RNA-mediated effects. We found that one of these ORFs,
G029442
—renamed
g
lycine-rich extracellular protein-1 (GREP1)—encodes a secreted protein highly expressed in breast cancer, and its knockout in 263 cancer cell lines showed preferential essentiality in breast cancer-derived lines. The secretome of GREP1-expressing cells has an increased abundance of the oncogenic cytokine GDF15, and GDF15 supplementation mitigated the growth-inhibitory effect of
GREP1
knockout. Our experiments suggest that noncanonical ORFs can express biologically active proteins that are potential therapeutic targets.
Noncanonical open reading frames are shown to be essential for cancer cell function. |
doi_str_mv | 10.1038/s41587-020-00806-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2539746041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664861806</galeid><sourcerecordid>A664861806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-c0e763d2a362552d4e1f391ec2be96dbcbf5fe59b09ddf1bbd1afa87ef4678623</originalsourceid><addsrcrecordid>eNqNkltrFjEQhoMotlb_gBeyIAiCW3Pa7O5lKR4KxYKnS0M2mawpu8lnki36783nVuuCiuRiwszzDsPMi9BDgo8JZt3zxEnTtTWmuMa4w6Kmt9AhabioiejF7fLH-zJpxAG6l9IlxlhwIe6iA8YagnnHDtGnN8Fr5YN3Wk1V2IGvIijj_FjZqGZIFXgdDFR28Tq74Au1iyGD86WUEvjsSsqGWJU2GkqAaarSEq_clZruoztWTQkeXMcj9OHli_enr-vzi1dnpyfntRaU5lpjaAUzVDFBm4YaDsSynoCmA_TCDHqwjYWmH3BvjCXDYIiyqmvBctF2grIj9HjtW2b7skDK8jIssQybJG1Y33KBObmhRjWBdN6GHJWeXdLyRAjeCVK2WKjjP1DlGZidDh6sK_mN4MlGUJgMX_OolpTkFnz6d_Ds3dv_Zy8-btlnv7HDkpwvpykXcuPnnFbJBqcrrmNIKYKVu-hmFb9JguXeWXJ1lizOkj-cJfcbfnS94WWYwfyS_LRSAdgKpFLyI8SbE_yj7Xc19NaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539746041</pqid></control><display><type>article</type><title>Noncanonical open reading frames encode functional proteins essential for cancer cell survival</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Prensner, John R. ; Enache, Oana M. ; Luria, Victor ; Krug, Karsten ; Clauser, Karl R. ; Dempster, Joshua M. ; Karger, Amir ; Wang, Li ; Stumbraite, Karolina ; Wang, Vickie M. ; Botta, Ginevra ; Lyons, Nicholas J. ; Goodale, Amy ; Kalani, Zohra ; Fritchman, Briana ; Brown, Adam ; Alan, Douglas ; Green, Thomas ; Yang, Xiaoping ; Jaffe, Jacob D. ; Roth, Jennifer A. ; Piccioni, Federica ; Kirschner, Marc W. ; Ji, Zhe ; Root, David E. ; Golub, Todd R.</creator><creatorcontrib>Prensner, John R. ; Enache, Oana M. ; Luria, Victor ; Krug, Karsten ; Clauser, Karl R. ; Dempster, Joshua M. ; Karger, Amir ; Wang, Li ; Stumbraite, Karolina ; Wang, Vickie M. ; Botta, Ginevra ; Lyons, Nicholas J. ; Goodale, Amy ; Kalani, Zohra ; Fritchman, Briana ; Brown, Adam ; Alan, Douglas ; Green, Thomas ; Yang, Xiaoping ; Jaffe, Jacob D. ; Roth, Jennifer A. ; Piccioni, Federica ; Kirschner, Marc W. ; Ji, Zhe ; Root, David E. ; Golub, Todd R.</creatorcontrib><description>Although genomic analyses predict many noncanonical open reading frames (ORFs) in the human genome, it is unclear whether they encode biologically active proteins. Here we experimentally interrogated 553 candidates selected from noncanonical ORF datasets. Of these, 57 induced viability defects when knocked out in human cancer cell lines. Following ectopic expression, 257 showed evidence of protein expression and 401 induced gene expression changes. Clustered regularly interspaced short palindromic repeat (CRISPR) tiling and start codon mutagenesis indicated that their biological effects required translation as opposed to RNA-mediated effects. We found that one of these ORFs,
G029442
—renamed
g
lycine-rich extracellular protein-1 (GREP1)—encodes a secreted protein highly expressed in breast cancer, and its knockout in 263 cancer cell lines showed preferential essentiality in breast cancer-derived lines. The secretome of GREP1-expressing cells has an increased abundance of the oncogenic cytokine GDF15, and GDF15 supplementation mitigated the growth-inhibitory effect of
GREP1
knockout. Our experiments suggest that noncanonical ORFs can express biologically active proteins that are potential therapeutic targets.
Noncanonical open reading frames are shown to be essential for cancer cell function.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-00806-2</identifier><identifier>PMID: 33510483</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/574 ; 631/67/69 ; Agriculture ; Bioinformatics ; Biological activity ; Biological effects ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Breast cancer ; Cancer cells ; Cell Line, Tumor ; Cell survival ; Cell Survival - physiology ; Clustered Regularly Interspaced Short Palindromic Repeats ; CRISPR ; Cytokines ; Ectopic expression ; Frames ; Gene expression ; Genetic aspects ; Genomic analysis ; Glycine ; Health aspects ; HEK293 Cells ; Human genome ; Humans ; Letter ; Life Sciences ; Mutagenesis ; Neoplasm Proteins - genetics ; Neoplasm Proteins - physiology ; Neoplasms - genetics ; Neoplasms - pathology ; Open Reading Frames ; Physiological aspects ; Proteins ; Secretome ; Supplements ; Therapeutic targets ; Tiling ; Tumor cell lines</subject><ispartof>Nature biotechnology, 2021-06, Vol.39 (6), p.697-704</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-c0e763d2a362552d4e1f391ec2be96dbcbf5fe59b09ddf1bbd1afa87ef4678623</citedby><cites>FETCH-LOGICAL-c622t-c0e763d2a362552d4e1f391ec2be96dbcbf5fe59b09ddf1bbd1afa87ef4678623</cites><orcidid>0000-0003-0113-2403 ; 0000-0002-4561-3850 ; 0000-0001-5122-861X ; 0000-0001-9845-1210 ; 0000-0002-1809-8099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33510483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prensner, John R.</creatorcontrib><creatorcontrib>Enache, Oana M.</creatorcontrib><creatorcontrib>Luria, Victor</creatorcontrib><creatorcontrib>Krug, Karsten</creatorcontrib><creatorcontrib>Clauser, Karl R.</creatorcontrib><creatorcontrib>Dempster, Joshua M.</creatorcontrib><creatorcontrib>Karger, Amir</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Stumbraite, Karolina</creatorcontrib><creatorcontrib>Wang, Vickie M.</creatorcontrib><creatorcontrib>Botta, Ginevra</creatorcontrib><creatorcontrib>Lyons, Nicholas J.</creatorcontrib><creatorcontrib>Goodale, Amy</creatorcontrib><creatorcontrib>Kalani, Zohra</creatorcontrib><creatorcontrib>Fritchman, Briana</creatorcontrib><creatorcontrib>Brown, Adam</creatorcontrib><creatorcontrib>Alan, Douglas</creatorcontrib><creatorcontrib>Green, Thomas</creatorcontrib><creatorcontrib>Yang, Xiaoping</creatorcontrib><creatorcontrib>Jaffe, Jacob D.</creatorcontrib><creatorcontrib>Roth, Jennifer A.</creatorcontrib><creatorcontrib>Piccioni, Federica</creatorcontrib><creatorcontrib>Kirschner, Marc W.</creatorcontrib><creatorcontrib>Ji, Zhe</creatorcontrib><creatorcontrib>Root, David E.</creatorcontrib><creatorcontrib>Golub, Todd R.</creatorcontrib><title>Noncanonical open reading frames encode functional proteins essential for cancer cell survival</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Although genomic analyses predict many noncanonical open reading frames (ORFs) in the human genome, it is unclear whether they encode biologically active proteins. Here we experimentally interrogated 553 candidates selected from noncanonical ORF datasets. Of these, 57 induced viability defects when knocked out in human cancer cell lines. Following ectopic expression, 257 showed evidence of protein expression and 401 induced gene expression changes. Clustered regularly interspaced short palindromic repeat (CRISPR) tiling and start codon mutagenesis indicated that their biological effects required translation as opposed to RNA-mediated effects. We found that one of these ORFs,
G029442
—renamed
g
lycine-rich extracellular protein-1 (GREP1)—encodes a secreted protein highly expressed in breast cancer, and its knockout in 263 cancer cell lines showed preferential essentiality in breast cancer-derived lines. The secretome of GREP1-expressing cells has an increased abundance of the oncogenic cytokine GDF15, and GDF15 supplementation mitigated the growth-inhibitory effect of
GREP1
knockout. Our experiments suggest that noncanonical ORFs can express biologically active proteins that are potential therapeutic targets.
Noncanonical open reading frames are shown to be essential for cancer cell function.</description><subject>631/337/574</subject><subject>631/67/69</subject><subject>Agriculture</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biological effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Breast cancer</subject><subject>Cancer cells</subject><subject>Cell Line, Tumor</subject><subject>Cell survival</subject><subject>Cell Survival - physiology</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>CRISPR</subject><subject>Cytokines</subject><subject>Ectopic expression</subject><subject>Frames</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomic analysis</subject><subject>Glycine</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Human genome</subject><subject>Humans</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Mutagenesis</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - physiology</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Open Reading Frames</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Secretome</subject><subject>Supplements</subject><subject>Therapeutic targets</subject><subject>Tiling</subject><subject>Tumor cell lines</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkltrFjEQhoMotlb_gBeyIAiCW3Pa7O5lKR4KxYKnS0M2mawpu8lnki36783nVuuCiuRiwszzDsPMi9BDgo8JZt3zxEnTtTWmuMa4w6Kmt9AhabioiejF7fLH-zJpxAG6l9IlxlhwIe6iA8YagnnHDtGnN8Fr5YN3Wk1V2IGvIijj_FjZqGZIFXgdDFR28Tq74Au1iyGD86WUEvjsSsqGWJU2GkqAaarSEq_clZruoztWTQkeXMcj9OHli_enr-vzi1dnpyfntRaU5lpjaAUzVDFBm4YaDsSynoCmA_TCDHqwjYWmH3BvjCXDYIiyqmvBctF2grIj9HjtW2b7skDK8jIssQybJG1Y33KBObmhRjWBdN6GHJWeXdLyRAjeCVK2WKjjP1DlGZidDh6sK_mN4MlGUJgMX_OolpTkFnz6d_Ds3dv_Zy8-btlnv7HDkpwvpykXcuPnnFbJBqcrrmNIKYKVu-hmFb9JguXeWXJ1lizOkj-cJfcbfnS94WWYwfyS_LRSAdgKpFLyI8SbE_yj7Xc19NaM</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Prensner, John R.</creator><creator>Enache, Oana M.</creator><creator>Luria, Victor</creator><creator>Krug, Karsten</creator><creator>Clauser, Karl R.</creator><creator>Dempster, Joshua M.</creator><creator>Karger, Amir</creator><creator>Wang, Li</creator><creator>Stumbraite, Karolina</creator><creator>Wang, Vickie M.</creator><creator>Botta, Ginevra</creator><creator>Lyons, Nicholas J.</creator><creator>Goodale, Amy</creator><creator>Kalani, Zohra</creator><creator>Fritchman, Briana</creator><creator>Brown, Adam</creator><creator>Alan, Douglas</creator><creator>Green, Thomas</creator><creator>Yang, Xiaoping</creator><creator>Jaffe, Jacob D.</creator><creator>Roth, Jennifer A.</creator><creator>Piccioni, Federica</creator><creator>Kirschner, Marc W.</creator><creator>Ji, Zhe</creator><creator>Root, David E.</creator><creator>Golub, Todd R.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-0113-2403</orcidid><orcidid>https://orcid.org/0000-0002-4561-3850</orcidid><orcidid>https://orcid.org/0000-0001-5122-861X</orcidid><orcidid>https://orcid.org/0000-0001-9845-1210</orcidid><orcidid>https://orcid.org/0000-0002-1809-8099</orcidid></search><sort><creationdate>20210601</creationdate><title>Noncanonical open reading frames encode functional proteins essential for cancer cell survival</title><author>Prensner, John R. ; Enache, Oana M. ; Luria, Victor ; Krug, Karsten ; Clauser, Karl R. ; Dempster, Joshua M. ; Karger, Amir ; Wang, Li ; Stumbraite, Karolina ; Wang, Vickie M. ; Botta, Ginevra ; Lyons, Nicholas J. ; Goodale, Amy ; Kalani, Zohra ; Fritchman, Briana ; Brown, Adam ; Alan, Douglas ; Green, Thomas ; Yang, Xiaoping ; Jaffe, Jacob D. ; Roth, Jennifer A. ; Piccioni, Federica ; Kirschner, Marc W. ; Ji, Zhe ; Root, David E. ; Golub, Todd R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-c0e763d2a362552d4e1f391ec2be96dbcbf5fe59b09ddf1bbd1afa87ef4678623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/337/574</topic><topic>631/67/69</topic><topic>Agriculture</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biological effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Breast cancer</topic><topic>Cancer cells</topic><topic>Cell Line, Tumor</topic><topic>Cell survival</topic><topic>Cell Survival - physiology</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>CRISPR</topic><topic>Cytokines</topic><topic>Ectopic expression</topic><topic>Frames</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomic analysis</topic><topic>Glycine</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Human genome</topic><topic>Humans</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Mutagenesis</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - physiology</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Open Reading Frames</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Secretome</topic><topic>Supplements</topic><topic>Therapeutic targets</topic><topic>Tiling</topic><topic>Tumor cell lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prensner, John R.</creatorcontrib><creatorcontrib>Enache, Oana M.</creatorcontrib><creatorcontrib>Luria, Victor</creatorcontrib><creatorcontrib>Krug, Karsten</creatorcontrib><creatorcontrib>Clauser, Karl R.</creatorcontrib><creatorcontrib>Dempster, Joshua M.</creatorcontrib><creatorcontrib>Karger, Amir</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Stumbraite, Karolina</creatorcontrib><creatorcontrib>Wang, Vickie M.</creatorcontrib><creatorcontrib>Botta, Ginevra</creatorcontrib><creatorcontrib>Lyons, Nicholas J.</creatorcontrib><creatorcontrib>Goodale, Amy</creatorcontrib><creatorcontrib>Kalani, Zohra</creatorcontrib><creatorcontrib>Fritchman, Briana</creatorcontrib><creatorcontrib>Brown, Adam</creatorcontrib><creatorcontrib>Alan, Douglas</creatorcontrib><creatorcontrib>Green, Thomas</creatorcontrib><creatorcontrib>Yang, Xiaoping</creatorcontrib><creatorcontrib>Jaffe, Jacob D.</creatorcontrib><creatorcontrib>Roth, Jennifer A.</creatorcontrib><creatorcontrib>Piccioni, Federica</creatorcontrib><creatorcontrib>Kirschner, Marc W.</creatorcontrib><creatorcontrib>Ji, Zhe</creatorcontrib><creatorcontrib>Root, David E.</creatorcontrib><creatorcontrib>Golub, Todd R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prensner, John R.</au><au>Enache, Oana M.</au><au>Luria, Victor</au><au>Krug, Karsten</au><au>Clauser, Karl R.</au><au>Dempster, Joshua M.</au><au>Karger, Amir</au><au>Wang, Li</au><au>Stumbraite, Karolina</au><au>Wang, Vickie M.</au><au>Botta, Ginevra</au><au>Lyons, Nicholas J.</au><au>Goodale, Amy</au><au>Kalani, Zohra</au><au>Fritchman, Briana</au><au>Brown, Adam</au><au>Alan, Douglas</au><au>Green, Thomas</au><au>Yang, Xiaoping</au><au>Jaffe, Jacob D.</au><au>Roth, Jennifer A.</au><au>Piccioni, Federica</au><au>Kirschner, Marc W.</au><au>Ji, Zhe</au><au>Root, David E.</au><au>Golub, Todd R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncanonical open reading frames encode functional proteins essential for cancer cell survival</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>39</volume><issue>6</issue><spage>697</spage><epage>704</epage><pages>697-704</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Although genomic analyses predict many noncanonical open reading frames (ORFs) in the human genome, it is unclear whether they encode biologically active proteins. Here we experimentally interrogated 553 candidates selected from noncanonical ORF datasets. Of these, 57 induced viability defects when knocked out in human cancer cell lines. Following ectopic expression, 257 showed evidence of protein expression and 401 induced gene expression changes. Clustered regularly interspaced short palindromic repeat (CRISPR) tiling and start codon mutagenesis indicated that their biological effects required translation as opposed to RNA-mediated effects. We found that one of these ORFs,
G029442
—renamed
g
lycine-rich extracellular protein-1 (GREP1)—encodes a secreted protein highly expressed in breast cancer, and its knockout in 263 cancer cell lines showed preferential essentiality in breast cancer-derived lines. The secretome of GREP1-expressing cells has an increased abundance of the oncogenic cytokine GDF15, and GDF15 supplementation mitigated the growth-inhibitory effect of
GREP1
knockout. Our experiments suggest that noncanonical ORFs can express biologically active proteins that are potential therapeutic targets.
Noncanonical open reading frames are shown to be essential for cancer cell function.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33510483</pmid><doi>10.1038/s41587-020-00806-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0113-2403</orcidid><orcidid>https://orcid.org/0000-0002-4561-3850</orcidid><orcidid>https://orcid.org/0000-0001-5122-861X</orcidid><orcidid>https://orcid.org/0000-0001-9845-1210</orcidid><orcidid>https://orcid.org/0000-0002-1809-8099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2021-06, Vol.39 (6), p.697-704 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_journals_2539746041 |
source | MEDLINE; Nature Journals Online; Alma/SFX Local Collection |
subjects | 631/337/574 631/67/69 Agriculture Bioinformatics Biological activity Biological effects Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Breast cancer Cancer cells Cell Line, Tumor Cell survival Cell Survival - physiology Clustered Regularly Interspaced Short Palindromic Repeats CRISPR Cytokines Ectopic expression Frames Gene expression Genetic aspects Genomic analysis Glycine Health aspects HEK293 Cells Human genome Humans Letter Life Sciences Mutagenesis Neoplasm Proteins - genetics Neoplasm Proteins - physiology Neoplasms - genetics Neoplasms - pathology Open Reading Frames Physiological aspects Proteins Secretome Supplements Therapeutic targets Tiling Tumor cell lines |
title | Noncanonical open reading frames encode functional proteins essential for cancer cell survival |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncanonical%20open%20reading%20frames%20encode%20functional%20proteins%20essential%20for%20cancer%20cell%20survival&rft.jtitle=Nature%20biotechnology&rft.au=Prensner,%20John%20R.&rft.date=2021-06-01&rft.volume=39&rft.issue=6&rft.spage=697&rft.epage=704&rft.pages=697-704&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-00806-2&rft_dat=%3Cgale_proqu%3EA664861806%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539746041&rft_id=info:pmid/33510483&rft_galeid=A664861806&rfr_iscdi=true |