Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems

•SMA-AGDE method is proposed for solving various optimization problems.•The algorithm performance is verified on CEC’17 benchmark.•The method performance is verified on 3 engineering and 2 combinatorial problems.•Efficiency of the proposed method is compared with many metaheuristics. The Slime Mould...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2021-07, Vol.174, p.114689, Article 114689
Hauptverfasser: Houssein, Essam H., Mahdy, Mohamed A., Blondin, Maude J., Shebl, Doaa, Mohamed, Waleed M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114689
container_title Expert systems with applications
container_volume 174
creator Houssein, Essam H.
Mahdy, Mohamed A.
Blondin, Maude J.
Shebl, Doaa
Mohamed, Waleed M.
description •SMA-AGDE method is proposed for solving various optimization problems.•The algorithm performance is verified on CEC’17 benchmark.•The method performance is verified on 3 engineering and 2 combinatorial problems.•Efficiency of the proposed method is compared with many metaheuristics. The Slime Mould Algorithm (SMA) is a recent metaheuristic inspired by the oscillation of slime mould. Similar to other original metaheuristic algorithms (MAs), SMA may suffer from drawbacks, such as being trapped in minimum local regions and improper balance between exploitation and exploration phases. To overcome these weaknesses, this paper proposes a hybrid algorithm: SMA combined to Adaptive Guided Differential Evolution Algorithm (AGDE) (SMA-AGDE). The AGDE mutation method is employed to enhance the swarm agents’ local search, increase the population’s diversity, and help avoid premature convergence. The SMA-AGDE’s performance is evaluated on the CEC’17 test suite, three engineering design problems – tension/compression spring, pressure vessel, and rolling element bearing – and two combinatorial optimization problems – bin packing and quadratic assignment. The SMA-AGDE is compared with three categories of optimization methods: (1) The well-studied MAs, i.e., Biogeography-Based Optimizer (BBO), Gravitational Search Algorithm (GSA), and Teaching Learning-Based Optimization (TLBO), (2) Recently developed MAs, i.e., Harris Hawks Optimization (HHO), Manta Ray Foraging optimization (MRFO), and the original SMA, and (3) High-performance MAs, i.e., Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), and AGDE. The overall simulation results reveal that the SMA-AGDE ranked first among the compared algorithms, and so, over different function landscapes. Thus, the proposed SMA-AGDE is a promising optimization tool for global and combinatorial optimization problems and engineering design problems.
doi_str_mv 10.1016/j.eswa.2021.114689
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539561131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417421001305</els_id><sourcerecordid>2539561131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e6ec3e985f71410aa3df638e639dbbd3b554c9331953c782850b89fbc098a0c93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA89Zksx8JeJGiVih40XPIx2xN2d3UZLel3v3fptaDJy8zw8z7zAwvQteUzCih1e16BnGnZjnJ6YzSouLiBE0or1lW1YKdogkRZZ0VtC7O0UWMa0JoTUg9QV-LvQ7O4ti6DnDnx9Zi1a58cMN7h3cpYmXVZnBbwKvRWbDYuqaBAP3gVIth69txcL7_QzU-YOM77Xo1pFZSqd7iVet1Kn3a1blP9cNsgtctdPESnTWqjXD1m6fo7fHhdb7Ili9Pz_P7ZWZYzocMKjAMBC-bmhaUKMVsUzEOFRNWa8t0WRZGMEZFyUzNc14SzUWjDRFckTSZopvj3nT4Y4Q4yLUfQ59OyrxkoqwoZTSp8qPKBB9jgEZugutU2EtK5MFuuZYHu-XBbnm0O0F3RwjS_1sHQUbjoDdgXQAzSOvdf_g359eMXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539561131</pqid></control><display><type>article</type><title>Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Houssein, Essam H. ; Mahdy, Mohamed A. ; Blondin, Maude J. ; Shebl, Doaa ; Mohamed, Waleed M.</creator><creatorcontrib>Houssein, Essam H. ; Mahdy, Mohamed A. ; Blondin, Maude J. ; Shebl, Doaa ; Mohamed, Waleed M.</creatorcontrib><description>•SMA-AGDE method is proposed for solving various optimization problems.•The algorithm performance is verified on CEC’17 benchmark.•The method performance is verified on 3 engineering and 2 combinatorial problems.•Efficiency of the proposed method is compared with many metaheuristics. The Slime Mould Algorithm (SMA) is a recent metaheuristic inspired by the oscillation of slime mould. Similar to other original metaheuristic algorithms (MAs), SMA may suffer from drawbacks, such as being trapped in minimum local regions and improper balance between exploitation and exploration phases. To overcome these weaknesses, this paper proposes a hybrid algorithm: SMA combined to Adaptive Guided Differential Evolution Algorithm (AGDE) (SMA-AGDE). The AGDE mutation method is employed to enhance the swarm agents’ local search, increase the population’s diversity, and help avoid premature convergence. The SMA-AGDE’s performance is evaluated on the CEC’17 test suite, three engineering design problems – tension/compression spring, pressure vessel, and rolling element bearing – and two combinatorial optimization problems – bin packing and quadratic assignment. The SMA-AGDE is compared with three categories of optimization methods: (1) The well-studied MAs, i.e., Biogeography-Based Optimizer (BBO), Gravitational Search Algorithm (GSA), and Teaching Learning-Based Optimization (TLBO), (2) Recently developed MAs, i.e., Harris Hawks Optimization (HHO), Manta Ray Foraging optimization (MRFO), and the original SMA, and (3) High-performance MAs, i.e., Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), and AGDE. The overall simulation results reveal that the SMA-AGDE ranked first among the compared algorithms, and so, over different function landscapes. Thus, the proposed SMA-AGDE is a promising optimization tool for global and combinatorial optimization problems and engineering design problems.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2021.114689</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Adaptive algorithms ; Adaptive guided differential evolution algorithm (AGDE) ; Algorithms ; Combinatorial analysis ; Combinatorial optimization problems ; Compression springs ; Compression tests ; Covariance matrix ; Design engineering ; Design optimization ; Engineering design problems ; Evolutionary algorithms ; Evolutionary computation ; Exploration and exploitation ; Global optimization ; Global optimization problems ; Heuristic methods ; Machine learning ; Metaheuristics ; Mutation ; Optimization ; Performance evaluation ; Pressure vessels ; Roller bearings ; Search algorithms ; Slime ; Slime mould algorithm (SMA)</subject><ispartof>Expert systems with applications, 2021-07, Vol.174, p.114689, Article 114689</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e6ec3e985f71410aa3df638e639dbbd3b554c9331953c782850b89fbc098a0c93</citedby><cites>FETCH-LOGICAL-c328t-e6ec3e985f71410aa3df638e639dbbd3b554c9331953c782850b89fbc098a0c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2021.114689$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Houssein, Essam H.</creatorcontrib><creatorcontrib>Mahdy, Mohamed A.</creatorcontrib><creatorcontrib>Blondin, Maude J.</creatorcontrib><creatorcontrib>Shebl, Doaa</creatorcontrib><creatorcontrib>Mohamed, Waleed M.</creatorcontrib><title>Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems</title><title>Expert systems with applications</title><description>•SMA-AGDE method is proposed for solving various optimization problems.•The algorithm performance is verified on CEC’17 benchmark.•The method performance is verified on 3 engineering and 2 combinatorial problems.•Efficiency of the proposed method is compared with many metaheuristics. The Slime Mould Algorithm (SMA) is a recent metaheuristic inspired by the oscillation of slime mould. Similar to other original metaheuristic algorithms (MAs), SMA may suffer from drawbacks, such as being trapped in minimum local regions and improper balance between exploitation and exploration phases. To overcome these weaknesses, this paper proposes a hybrid algorithm: SMA combined to Adaptive Guided Differential Evolution Algorithm (AGDE) (SMA-AGDE). The AGDE mutation method is employed to enhance the swarm agents’ local search, increase the population’s diversity, and help avoid premature convergence. The SMA-AGDE’s performance is evaluated on the CEC’17 test suite, three engineering design problems – tension/compression spring, pressure vessel, and rolling element bearing – and two combinatorial optimization problems – bin packing and quadratic assignment. The SMA-AGDE is compared with three categories of optimization methods: (1) The well-studied MAs, i.e., Biogeography-Based Optimizer (BBO), Gravitational Search Algorithm (GSA), and Teaching Learning-Based Optimization (TLBO), (2) Recently developed MAs, i.e., Harris Hawks Optimization (HHO), Manta Ray Foraging optimization (MRFO), and the original SMA, and (3) High-performance MAs, i.e., Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), and AGDE. The overall simulation results reveal that the SMA-AGDE ranked first among the compared algorithms, and so, over different function landscapes. Thus, the proposed SMA-AGDE is a promising optimization tool for global and combinatorial optimization problems and engineering design problems.</description><subject>Adaptive algorithms</subject><subject>Adaptive guided differential evolution algorithm (AGDE)</subject><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Combinatorial optimization problems</subject><subject>Compression springs</subject><subject>Compression tests</subject><subject>Covariance matrix</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Engineering design problems</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exploration and exploitation</subject><subject>Global optimization</subject><subject>Global optimization problems</subject><subject>Heuristic methods</subject><subject>Machine learning</subject><subject>Metaheuristics</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Pressure vessels</subject><subject>Roller bearings</subject><subject>Search algorithms</subject><subject>Slime</subject><subject>Slime mould algorithm (SMA)</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA89Zksx8JeJGiVih40XPIx2xN2d3UZLel3v3fptaDJy8zw8z7zAwvQteUzCih1e16BnGnZjnJ6YzSouLiBE0or1lW1YKdogkRZZ0VtC7O0UWMa0JoTUg9QV-LvQ7O4ti6DnDnx9Zi1a58cMN7h3cpYmXVZnBbwKvRWbDYuqaBAP3gVIth69txcL7_QzU-YOM77Xo1pFZSqd7iVet1Kn3a1blP9cNsgtctdPESnTWqjXD1m6fo7fHhdb7Ili9Pz_P7ZWZYzocMKjAMBC-bmhaUKMVsUzEOFRNWa8t0WRZGMEZFyUzNc14SzUWjDRFckTSZopvj3nT4Y4Q4yLUfQ59OyrxkoqwoZTSp8qPKBB9jgEZugutU2EtK5MFuuZYHu-XBbnm0O0F3RwjS_1sHQUbjoDdgXQAzSOvdf_g359eMXA</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Houssein, Essam H.</creator><creator>Mahdy, Mohamed A.</creator><creator>Blondin, Maude J.</creator><creator>Shebl, Doaa</creator><creator>Mohamed, Waleed M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210715</creationdate><title>Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems</title><author>Houssein, Essam H. ; Mahdy, Mohamed A. ; Blondin, Maude J. ; Shebl, Doaa ; Mohamed, Waleed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e6ec3e985f71410aa3df638e639dbbd3b554c9331953c782850b89fbc098a0c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive guided differential evolution algorithm (AGDE)</topic><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Combinatorial optimization problems</topic><topic>Compression springs</topic><topic>Compression tests</topic><topic>Covariance matrix</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Engineering design problems</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exploration and exploitation</topic><topic>Global optimization</topic><topic>Global optimization problems</topic><topic>Heuristic methods</topic><topic>Machine learning</topic><topic>Metaheuristics</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Pressure vessels</topic><topic>Roller bearings</topic><topic>Search algorithms</topic><topic>Slime</topic><topic>Slime mould algorithm (SMA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houssein, Essam H.</creatorcontrib><creatorcontrib>Mahdy, Mohamed A.</creatorcontrib><creatorcontrib>Blondin, Maude J.</creatorcontrib><creatorcontrib>Shebl, Doaa</creatorcontrib><creatorcontrib>Mohamed, Waleed M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houssein, Essam H.</au><au>Mahdy, Mohamed A.</au><au>Blondin, Maude J.</au><au>Shebl, Doaa</au><au>Mohamed, Waleed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems</atitle><jtitle>Expert systems with applications</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>174</volume><spage>114689</spage><pages>114689-</pages><artnum>114689</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•SMA-AGDE method is proposed for solving various optimization problems.•The algorithm performance is verified on CEC’17 benchmark.•The method performance is verified on 3 engineering and 2 combinatorial problems.•Efficiency of the proposed method is compared with many metaheuristics. The Slime Mould Algorithm (SMA) is a recent metaheuristic inspired by the oscillation of slime mould. Similar to other original metaheuristic algorithms (MAs), SMA may suffer from drawbacks, such as being trapped in minimum local regions and improper balance between exploitation and exploration phases. To overcome these weaknesses, this paper proposes a hybrid algorithm: SMA combined to Adaptive Guided Differential Evolution Algorithm (AGDE) (SMA-AGDE). The AGDE mutation method is employed to enhance the swarm agents’ local search, increase the population’s diversity, and help avoid premature convergence. The SMA-AGDE’s performance is evaluated on the CEC’17 test suite, three engineering design problems – tension/compression spring, pressure vessel, and rolling element bearing – and two combinatorial optimization problems – bin packing and quadratic assignment. The SMA-AGDE is compared with three categories of optimization methods: (1) The well-studied MAs, i.e., Biogeography-Based Optimizer (BBO), Gravitational Search Algorithm (GSA), and Teaching Learning-Based Optimization (TLBO), (2) Recently developed MAs, i.e., Harris Hawks Optimization (HHO), Manta Ray Foraging optimization (MRFO), and the original SMA, and (3) High-performance MAs, i.e., Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), and AGDE. The overall simulation results reveal that the SMA-AGDE ranked first among the compared algorithms, and so, over different function landscapes. Thus, the proposed SMA-AGDE is a promising optimization tool for global and combinatorial optimization problems and engineering design problems.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2021.114689</doi></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2021-07, Vol.174, p.114689, Article 114689
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2539561131
source Elsevier ScienceDirect Journals Complete
subjects Adaptive algorithms
Adaptive guided differential evolution algorithm (AGDE)
Algorithms
Combinatorial analysis
Combinatorial optimization problems
Compression springs
Compression tests
Covariance matrix
Design engineering
Design optimization
Engineering design problems
Evolutionary algorithms
Evolutionary computation
Exploration and exploitation
Global optimization
Global optimization problems
Heuristic methods
Machine learning
Metaheuristics
Mutation
Optimization
Performance evaluation
Pressure vessels
Roller bearings
Search algorithms
Slime
Slime mould algorithm (SMA)
title Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20slime%20mould%20algorithm%20with%20adaptive%20guided%20differential%20evolution%20algorithm%20for%20combinatorial%20and%20global%20optimization%20problems&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Houssein,%20Essam%20H.&rft.date=2021-07-15&rft.volume=174&rft.spage=114689&rft.pages=114689-&rft.artnum=114689&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2021.114689&rft_dat=%3Cproquest_cross%3E2539561131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539561131&rft_id=info:pmid/&rft_els_id=S0957417421001305&rfr_iscdi=true