In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production
[Display omitted] The highly active and stable shell-thickness-controlled Ni3C@Ni core–shell co-catalysts could achieve the shell-thickness-dependented photocatalytic H2 evolution over the g-C3N4 nanosheets. •The in-situ construction of Ni3C@Ni core–shell cocatalysts was first reported.•The exact ac...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2021-08, Vol.291, p.120104, Article 120104 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120104 |
container_title | Applied catalysis. B, Environmental |
container_volume | 291 |
creator | Shen, Rongchen He, Kelin Zhang, Aiping Li, Neng Ng, Yun Hau Zhang, Peng Hu, Jun Li, Xin |
description | [Display omitted]
The highly active and stable shell-thickness-controlled Ni3C@Ni core–shell co-catalysts could achieve the shell-thickness-dependented photocatalytic H2 evolution over the g-C3N4 nanosheets.
•The in-situ construction of Ni3C@Ni core–shell cocatalysts was first reported.•The exact active sites over Ni3C@Ni core–shell co-catalysts were revealed.•The Schottky-based heterojunctions with improving charge transfer channels were carefully addressed.•The H adsorption and Gibbs free energies, and H2-evolution kinetics were verified.•Shell-thickness-dependented Photocatalytic H2 Production was achieved.
Herein, we designed the shell-thickness-controlled Ni3C@Ni/g-C3N4 photocatalysts with intimate Schottky-junctions by an in situ high-temperature transformation strategy. Meanwhile, we found that the cocatalysts with optimized Ni shell-layer thickness of 15 nm could achieve the best visible-light photocatalytic H2-production performance of 11.28 μmolh−1, with an apparent quantum yield (AQY) of 1.49 % at 420 nm, which was 16 times higher than that of Ni3C/g-C3N4. Moreover, an excellent stability is achieved. The well-defined density functional theory (DFT) calculations indicate that the “TOP_C1” sites of Ni3C@Ni can exhibit the H adsorption and Gibbs free energies of -0.07eV and 0.18 eV, respectively, which should be hydrogen-evolution active sites instead of two “HOLLOW” sites. Interestingly, the intimate Schottky-junctions, could hinder rapid charge recombination, increase reactive sites, boost catalytic kinetics and passivate unstable surface of Ni3C, thus achieving shell-thickness-dependent hydrogen evolution. Therefore, the Ni3C@Ni core–shell cocatalysts will open a new avenue for robust solar fuel production. |
doi_str_mv | 10.1016/j.apcatb.2021.120104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539556465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337321002307</els_id><sourcerecordid>2539556465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-ebfc9742ccb01ab260adbde3db0b767768571b4cb8bea816ded102a0d2d0003b3</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRUWIIRM7f5CFIGuNS1K_ZhMchvgBZrJx1kKP6owmbaktaQze-R_8h_mSyGmvsxIlTt1DXUI-c1hz4N35Ya1nq4tZCxB8zQVwaN6RFR96yeQwyPdkBRvRMSl7-YF8zPkAAEKKYUVebgLLvhypjSGXdLTFx0DjSO-x6Gnylu683F7sfAUS_nl-yXucpjpUn56ecsk0PmKiv9hW7hoadIiVwPo9xkT_wazsvf0dMGfmcMbgMBQ672N5yyhVci3onKJb9GfkZNRTxk9v7yn5efn9bnvNbn9c3Wy_3TLbABSGZrSbvhHWGuDaiA60Mw6lM2D6ru-7oe25aawZDOqBdw4dB6HBCVfPl0aeki9LblU_HDEXdYjHFKpSiVZu2rZrurZSzULZFHNOOKo5-XudnhQH9Vq_OqilfvVav1rqr2tflzWsFzx6TCpbj8Gi8wltUS76_wf8BTFok9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539556465</pqid></control><display><type>article</type><title>In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production</title><source>Elsevier ScienceDirect Journals</source><creator>Shen, Rongchen ; He, Kelin ; Zhang, Aiping ; Li, Neng ; Ng, Yun Hau ; Zhang, Peng ; Hu, Jun ; Li, Xin</creator><creatorcontrib>Shen, Rongchen ; He, Kelin ; Zhang, Aiping ; Li, Neng ; Ng, Yun Hau ; Zhang, Peng ; Hu, Jun ; Li, Xin</creatorcontrib><description>[Display omitted]
The highly active and stable shell-thickness-controlled Ni3C@Ni core–shell co-catalysts could achieve the shell-thickness-dependented photocatalytic H2 evolution over the g-C3N4 nanosheets.
•The in-situ construction of Ni3C@Ni core–shell cocatalysts was first reported.•The exact active sites over Ni3C@Ni core–shell co-catalysts were revealed.•The Schottky-based heterojunctions with improving charge transfer channels were carefully addressed.•The H adsorption and Gibbs free energies, and H2-evolution kinetics were verified.•Shell-thickness-dependented Photocatalytic H2 Production was achieved.
Herein, we designed the shell-thickness-controlled Ni3C@Ni/g-C3N4 photocatalysts with intimate Schottky-junctions by an in situ high-temperature transformation strategy. Meanwhile, we found that the cocatalysts with optimized Ni shell-layer thickness of 15 nm could achieve the best visible-light photocatalytic H2-production performance of 11.28 μmolh−1, with an apparent quantum yield (AQY) of 1.49 % at 420 nm, which was 16 times higher than that of Ni3C/g-C3N4. Moreover, an excellent stability is achieved. The well-defined density functional theory (DFT) calculations indicate that the “TOP_C1” sites of Ni3C@Ni can exhibit the H adsorption and Gibbs free energies of -0.07eV and 0.18 eV, respectively, which should be hydrogen-evolution active sites instead of two “HOLLOW” sites. Interestingly, the intimate Schottky-junctions, could hinder rapid charge recombination, increase reactive sites, boost catalytic kinetics and passivate unstable surface of Ni3C, thus achieving shell-thickness-dependent hydrogen evolution. Therefore, the Ni3C@Ni core–shell cocatalysts will open a new avenue for robust solar fuel production.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2021.120104</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption energy ; Carbon nitride ; Charge separation kinetics ; Density functional theory ; Fuel production ; g-C3N4 nanosheets ; High temperature ; Hydrogen evolution ; Hydrogen production ; Nanosheets ; Nickel ; Photocatalysis ; Photocatalytic hydrogen evolution ; Reaction kinetics ; Recombination ; Shell-thickness-controlled Ni3C@Ni core–shell co-catalyst ; Thickness</subject><ispartof>Applied catalysis. B, Environmental, 2021-08, Vol.291, p.120104, Article 120104</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-ebfc9742ccb01ab260adbde3db0b767768571b4cb8bea816ded102a0d2d0003b3</citedby><cites>FETCH-LOGICAL-c400t-ebfc9742ccb01ab260adbde3db0b767768571b4cb8bea816ded102a0d2d0003b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337321002307$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shen, Rongchen</creatorcontrib><creatorcontrib>He, Kelin</creatorcontrib><creatorcontrib>Zhang, Aiping</creatorcontrib><creatorcontrib>Li, Neng</creatorcontrib><creatorcontrib>Ng, Yun Hau</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><title>In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
The highly active and stable shell-thickness-controlled Ni3C@Ni core–shell co-catalysts could achieve the shell-thickness-dependented photocatalytic H2 evolution over the g-C3N4 nanosheets.
•The in-situ construction of Ni3C@Ni core–shell cocatalysts was first reported.•The exact active sites over Ni3C@Ni core–shell co-catalysts were revealed.•The Schottky-based heterojunctions with improving charge transfer channels were carefully addressed.•The H adsorption and Gibbs free energies, and H2-evolution kinetics were verified.•Shell-thickness-dependented Photocatalytic H2 Production was achieved.
Herein, we designed the shell-thickness-controlled Ni3C@Ni/g-C3N4 photocatalysts with intimate Schottky-junctions by an in situ high-temperature transformation strategy. Meanwhile, we found that the cocatalysts with optimized Ni shell-layer thickness of 15 nm could achieve the best visible-light photocatalytic H2-production performance of 11.28 μmolh−1, with an apparent quantum yield (AQY) of 1.49 % at 420 nm, which was 16 times higher than that of Ni3C/g-C3N4. Moreover, an excellent stability is achieved. The well-defined density functional theory (DFT) calculations indicate that the “TOP_C1” sites of Ni3C@Ni can exhibit the H adsorption and Gibbs free energies of -0.07eV and 0.18 eV, respectively, which should be hydrogen-evolution active sites instead of two “HOLLOW” sites. Interestingly, the intimate Schottky-junctions, could hinder rapid charge recombination, increase reactive sites, boost catalytic kinetics and passivate unstable surface of Ni3C, thus achieving shell-thickness-dependent hydrogen evolution. Therefore, the Ni3C@Ni core–shell cocatalysts will open a new avenue for robust solar fuel production.</description><subject>Adsorption energy</subject><subject>Carbon nitride</subject><subject>Charge separation kinetics</subject><subject>Density functional theory</subject><subject>Fuel production</subject><subject>g-C3N4 nanosheets</subject><subject>High temperature</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Nanosheets</subject><subject>Nickel</subject><subject>Photocatalysis</subject><subject>Photocatalytic hydrogen evolution</subject><subject>Reaction kinetics</subject><subject>Recombination</subject><subject>Shell-thickness-controlled Ni3C@Ni core–shell co-catalyst</subject><subject>Thickness</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqHDEQRUWIIRM7f5CFIGuNS1K_ZhMchvgBZrJx1kKP6owmbaktaQze-R_8h_mSyGmvsxIlTt1DXUI-c1hz4N35Ya1nq4tZCxB8zQVwaN6RFR96yeQwyPdkBRvRMSl7-YF8zPkAAEKKYUVebgLLvhypjSGXdLTFx0DjSO-x6Gnylu683F7sfAUS_nl-yXucpjpUn56ecsk0PmKiv9hW7hoadIiVwPo9xkT_wazsvf0dMGfmcMbgMBQ672N5yyhVci3onKJb9GfkZNRTxk9v7yn5efn9bnvNbn9c3Wy_3TLbABSGZrSbvhHWGuDaiA60Mw6lM2D6ru-7oe25aawZDOqBdw4dB6HBCVfPl0aeki9LblU_HDEXdYjHFKpSiVZu2rZrurZSzULZFHNOOKo5-XudnhQH9Vq_OqilfvVav1rqr2tflzWsFzx6TCpbj8Gi8wltUS76_wf8BTFok9Q</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Shen, Rongchen</creator><creator>He, Kelin</creator><creator>Zhang, Aiping</creator><creator>Li, Neng</creator><creator>Ng, Yun Hau</creator><creator>Zhang, Peng</creator><creator>Hu, Jun</creator><creator>Li, Xin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210815</creationdate><title>In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production</title><author>Shen, Rongchen ; He, Kelin ; Zhang, Aiping ; Li, Neng ; Ng, Yun Hau ; Zhang, Peng ; Hu, Jun ; Li, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-ebfc9742ccb01ab260adbde3db0b767768571b4cb8bea816ded102a0d2d0003b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption energy</topic><topic>Carbon nitride</topic><topic>Charge separation kinetics</topic><topic>Density functional theory</topic><topic>Fuel production</topic><topic>g-C3N4 nanosheets</topic><topic>High temperature</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Nanosheets</topic><topic>Nickel</topic><topic>Photocatalysis</topic><topic>Photocatalytic hydrogen evolution</topic><topic>Reaction kinetics</topic><topic>Recombination</topic><topic>Shell-thickness-controlled Ni3C@Ni core–shell co-catalyst</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Rongchen</creatorcontrib><creatorcontrib>He, Kelin</creatorcontrib><creatorcontrib>Zhang, Aiping</creatorcontrib><creatorcontrib>Li, Neng</creatorcontrib><creatorcontrib>Ng, Yun Hau</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Rongchen</au><au>He, Kelin</au><au>Zhang, Aiping</au><au>Li, Neng</au><au>Ng, Yun Hau</au><au>Zhang, Peng</au><au>Hu, Jun</au><au>Li, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>291</volume><spage>120104</spage><pages>120104-</pages><artnum>120104</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
The highly active and stable shell-thickness-controlled Ni3C@Ni core–shell co-catalysts could achieve the shell-thickness-dependented photocatalytic H2 evolution over the g-C3N4 nanosheets.
•The in-situ construction of Ni3C@Ni core–shell cocatalysts was first reported.•The exact active sites over Ni3C@Ni core–shell co-catalysts were revealed.•The Schottky-based heterojunctions with improving charge transfer channels were carefully addressed.•The H adsorption and Gibbs free energies, and H2-evolution kinetics were verified.•Shell-thickness-dependented Photocatalytic H2 Production was achieved.
Herein, we designed the shell-thickness-controlled Ni3C@Ni/g-C3N4 photocatalysts with intimate Schottky-junctions by an in situ high-temperature transformation strategy. Meanwhile, we found that the cocatalysts with optimized Ni shell-layer thickness of 15 nm could achieve the best visible-light photocatalytic H2-production performance of 11.28 μmolh−1, with an apparent quantum yield (AQY) of 1.49 % at 420 nm, which was 16 times higher than that of Ni3C/g-C3N4. Moreover, an excellent stability is achieved. The well-defined density functional theory (DFT) calculations indicate that the “TOP_C1” sites of Ni3C@Ni can exhibit the H adsorption and Gibbs free energies of -0.07eV and 0.18 eV, respectively, which should be hydrogen-evolution active sites instead of two “HOLLOW” sites. Interestingly, the intimate Schottky-junctions, could hinder rapid charge recombination, increase reactive sites, boost catalytic kinetics and passivate unstable surface of Ni3C, thus achieving shell-thickness-dependent hydrogen evolution. Therefore, the Ni3C@Ni core–shell cocatalysts will open a new avenue for robust solar fuel production.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2021.120104</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2021-08, Vol.291, p.120104, Article 120104 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2539556465 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorption energy Carbon nitride Charge separation kinetics Density functional theory Fuel production g-C3N4 nanosheets High temperature Hydrogen evolution Hydrogen production Nanosheets Nickel Photocatalysis Photocatalytic hydrogen evolution Reaction kinetics Recombination Shell-thickness-controlled Ni3C@Ni core–shell co-catalyst Thickness |
title | In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20construction%20of%20metallic%20Ni3C@Ni%20core%E2%80%93shell%20cocatalysts%20over%20g-C3N4%20nanosheets%20for%20shell-thickness-dependent%20photocatalytic%20H2%20production&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Shen,%20Rongchen&rft.date=2021-08-15&rft.volume=291&rft.spage=120104&rft.pages=120104-&rft.artnum=120104&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2021.120104&rft_dat=%3Cproquest_cross%3E2539556465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539556465&rft_id=info:pmid/&rft_els_id=S0926337321002307&rfr_iscdi=true |