Thermo‐Responsive Microcapsules with Tunable Molecular Permeability for Controlled Encapsulation and Release
Microcapsules with regulated transmembrane transport are of great importance for various applications. The membranes with a tunable cut‐off threshold of permeation provide advanced functionality. Here, thermo‐responsive microcapsules are designed, whose hydrogel membrane shows a tunable cut‐off thre...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-06, Vol.31 (24), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Choi, Ye Hun Hwang, Ji‐Su Han, Sang Hoon Lee, Chang‐Soo Jeon, Seog‐Jin Kim, Shin‐Hyun |
description | Microcapsules with regulated transmembrane transport are of great importance for various applications. The membranes with a tunable cut‐off threshold of permeation provide advanced functionality. Here, thermo‐responsive microcapsules are designed, whose hydrogel membrane shows a tunable cut‐off threshold of permeation with temperature. To produce the microcapsules, water‐in‐oil‐in‐water (W/O/W) double‐emulsion droplets are microfluidically produced, whose oil shell contains oil‐soluble hydrogel precursor of poly(N, N‐diethylacrylamide) copolymerized with benzophenone (PDEAM‐BP). The PDEAM hydrogels, crosslinked by BP, show volume‐phase transition around 34 °C, which makes the microcapsules with the PDEAM hydrogel membrane thermo‐responsive. The microcapsules show temperature‐dependent changes in radius and membrane thickness. More importantly, the cut‐off threshold of permeation can be reversibly adjusted by temperature control as the degree of swelling decreases with temperature. This enables the molecule‐selective encapsulation and the controlled release of the encapsulants in a programmed manner by adjusting the temperature. The microcapsules can be rendered to be photo‐responsive by encapsulating photothermal polydopamine nanoparticles during the microfluidic operation, which allows the control of the degree of swelling with near‐infrared (NIR) irradiation. The thermo‐ and photo‐responsive microcapsules with a tunable cut‐off threshold are appealing as a new platform for drug carriers, microreactors, and microsensors.
Microcapsules with thermo‐responsive membranes are designed using water‐in‐oil‐in‐water double‐emulsion templates with an oil‐soluble hydrogel precursor. The microcapsules show molecular‐size‐selective transmembrane permeation due to the consistent mesh size of the hydrogel membrane. Moreover, the cut‐off threshold can be controlled by temperature. The thermo‐responsive microcapsules provide molecule‐selective encapsulation without leakage and controlled release of the encapsulants in a programmed manner. |
doi_str_mv | 10.1002/adfm.202100782 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539490494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539490494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-cc22efa4f143d6a807a7cda59c34078c7ad88237f1f26684c31d4f6847b5474e3</originalsourceid><addsrcrecordid>eNqFkM9KAzEQxoMoWKtXzwHPrfnXze6x1FaFFqVU8BbSbEK3pMma7Fp68xF8Rp_ElBU9eppvmO83w3wAXGM0xAiRW1ma3ZAgkhqekxPQwxnOBhSR_PRX49dzcBHjFiHMOWU94FYbHXb-6-NzqWPtXazeNVxUKngl69haHeG-ajZw1Tq5tmnkrVatlQE-J07LdWWr5gCND3DiXRO8tbqEU9fRsqm8g9KVcKmtllFfgjMjbdRXP7UPXmbT1eRhMH-6f5yM5wNFMScDpQjRRjKDGS0zmSMuuSrlqFCUpecUl2WeE8oNNiTLcpaokpkk-HrEONO0D266vXXwb62Ojdj6Nrh0UpARLViBWMGSa9i50rsxBm1EHaqdDAeBkThmKo6Zit9ME1B0wL6y-vCPW4zvZos_9huEt32x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539490494</pqid></control><display><type>article</type><title>Thermo‐Responsive Microcapsules with Tunable Molecular Permeability for Controlled Encapsulation and Release</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Choi, Ye Hun ; Hwang, Ji‐Su ; Han, Sang Hoon ; Lee, Chang‐Soo ; Jeon, Seog‐Jin ; Kim, Shin‐Hyun</creator><creatorcontrib>Choi, Ye Hun ; Hwang, Ji‐Su ; Han, Sang Hoon ; Lee, Chang‐Soo ; Jeon, Seog‐Jin ; Kim, Shin‐Hyun</creatorcontrib><description>Microcapsules with regulated transmembrane transport are of great importance for various applications. The membranes with a tunable cut‐off threshold of permeation provide advanced functionality. Here, thermo‐responsive microcapsules are designed, whose hydrogel membrane shows a tunable cut‐off threshold of permeation with temperature. To produce the microcapsules, water‐in‐oil‐in‐water (W/O/W) double‐emulsion droplets are microfluidically produced, whose oil shell contains oil‐soluble hydrogel precursor of poly(N, N‐diethylacrylamide) copolymerized with benzophenone (PDEAM‐BP). The PDEAM hydrogels, crosslinked by BP, show volume‐phase transition around 34 °C, which makes the microcapsules with the PDEAM hydrogel membrane thermo‐responsive. The microcapsules show temperature‐dependent changes in radius and membrane thickness. More importantly, the cut‐off threshold of permeation can be reversibly adjusted by temperature control as the degree of swelling decreases with temperature. This enables the molecule‐selective encapsulation and the controlled release of the encapsulants in a programmed manner by adjusting the temperature. The microcapsules can be rendered to be photo‐responsive by encapsulating photothermal polydopamine nanoparticles during the microfluidic operation, which allows the control of the degree of swelling with near‐infrared (NIR) irradiation. The thermo‐ and photo‐responsive microcapsules with a tunable cut‐off threshold are appealing as a new platform for drug carriers, microreactors, and microsensors.
Microcapsules with thermo‐responsive membranes are designed using water‐in‐oil‐in‐water double‐emulsion templates with an oil‐soluble hydrogel precursor. The microcapsules show molecular‐size‐selective transmembrane permeation due to the consistent mesh size of the hydrogel membrane. Moreover, the cut‐off threshold can be controlled by temperature. The thermo‐responsive microcapsules provide molecule‐selective encapsulation without leakage and controlled release of the encapsulants in a programmed manner.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202100782</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Controlled release ; Copolymerization ; double‐emulsion drops ; Drug carriers ; Encapsulation ; Hydrogels ; LCST ; Materials science ; Membranes ; microcapsules ; Microencapsulation ; Microfluidics ; Microreactors ; Nanoparticles ; Penetration ; Phase transitions ; Swelling ; Temperature control ; Temperature dependence</subject><ispartof>Advanced functional materials, 2021-06, Vol.31 (24), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-cc22efa4f143d6a807a7cda59c34078c7ad88237f1f26684c31d4f6847b5474e3</citedby><cites>FETCH-LOGICAL-c3172-cc22efa4f143d6a807a7cda59c34078c7ad88237f1f26684c31d4f6847b5474e3</cites><orcidid>0000-0003-4095-5779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202100782$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202100782$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Choi, Ye Hun</creatorcontrib><creatorcontrib>Hwang, Ji‐Su</creatorcontrib><creatorcontrib>Han, Sang Hoon</creatorcontrib><creatorcontrib>Lee, Chang‐Soo</creatorcontrib><creatorcontrib>Jeon, Seog‐Jin</creatorcontrib><creatorcontrib>Kim, Shin‐Hyun</creatorcontrib><title>Thermo‐Responsive Microcapsules with Tunable Molecular Permeability for Controlled Encapsulation and Release</title><title>Advanced functional materials</title><description>Microcapsules with regulated transmembrane transport are of great importance for various applications. The membranes with a tunable cut‐off threshold of permeation provide advanced functionality. Here, thermo‐responsive microcapsules are designed, whose hydrogel membrane shows a tunable cut‐off threshold of permeation with temperature. To produce the microcapsules, water‐in‐oil‐in‐water (W/O/W) double‐emulsion droplets are microfluidically produced, whose oil shell contains oil‐soluble hydrogel precursor of poly(N, N‐diethylacrylamide) copolymerized with benzophenone (PDEAM‐BP). The PDEAM hydrogels, crosslinked by BP, show volume‐phase transition around 34 °C, which makes the microcapsules with the PDEAM hydrogel membrane thermo‐responsive. The microcapsules show temperature‐dependent changes in radius and membrane thickness. More importantly, the cut‐off threshold of permeation can be reversibly adjusted by temperature control as the degree of swelling decreases with temperature. This enables the molecule‐selective encapsulation and the controlled release of the encapsulants in a programmed manner by adjusting the temperature. The microcapsules can be rendered to be photo‐responsive by encapsulating photothermal polydopamine nanoparticles during the microfluidic operation, which allows the control of the degree of swelling with near‐infrared (NIR) irradiation. The thermo‐ and photo‐responsive microcapsules with a tunable cut‐off threshold are appealing as a new platform for drug carriers, microreactors, and microsensors.
Microcapsules with thermo‐responsive membranes are designed using water‐in‐oil‐in‐water double‐emulsion templates with an oil‐soluble hydrogel precursor. The microcapsules show molecular‐size‐selective transmembrane permeation due to the consistent mesh size of the hydrogel membrane. Moreover, the cut‐off threshold can be controlled by temperature. The thermo‐responsive microcapsules provide molecule‐selective encapsulation without leakage and controlled release of the encapsulants in a programmed manner.</description><subject>Controlled release</subject><subject>Copolymerization</subject><subject>double‐emulsion drops</subject><subject>Drug carriers</subject><subject>Encapsulation</subject><subject>Hydrogels</subject><subject>LCST</subject><subject>Materials science</subject><subject>Membranes</subject><subject>microcapsules</subject><subject>Microencapsulation</subject><subject>Microfluidics</subject><subject>Microreactors</subject><subject>Nanoparticles</subject><subject>Penetration</subject><subject>Phase transitions</subject><subject>Swelling</subject><subject>Temperature control</subject><subject>Temperature dependence</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQxoMoWKtXzwHPrfnXze6x1FaFFqVU8BbSbEK3pMma7Fp68xF8Rp_ElBU9eppvmO83w3wAXGM0xAiRW1ma3ZAgkhqekxPQwxnOBhSR_PRX49dzcBHjFiHMOWU94FYbHXb-6-NzqWPtXazeNVxUKngl69haHeG-ajZw1Tq5tmnkrVatlQE-J07LdWWr5gCND3DiXRO8tbqEU9fRsqm8g9KVcKmtllFfgjMjbdRXP7UPXmbT1eRhMH-6f5yM5wNFMScDpQjRRjKDGS0zmSMuuSrlqFCUpecUl2WeE8oNNiTLcpaokpkk-HrEONO0D266vXXwb62Ojdj6Nrh0UpARLViBWMGSa9i50rsxBm1EHaqdDAeBkThmKo6Zit9ME1B0wL6y-vCPW4zvZos_9huEt32x</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Choi, Ye Hun</creator><creator>Hwang, Ji‐Su</creator><creator>Han, Sang Hoon</creator><creator>Lee, Chang‐Soo</creator><creator>Jeon, Seog‐Jin</creator><creator>Kim, Shin‐Hyun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4095-5779</orcidid></search><sort><creationdate>20210601</creationdate><title>Thermo‐Responsive Microcapsules with Tunable Molecular Permeability for Controlled Encapsulation and Release</title><author>Choi, Ye Hun ; Hwang, Ji‐Su ; Han, Sang Hoon ; Lee, Chang‐Soo ; Jeon, Seog‐Jin ; Kim, Shin‐Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-cc22efa4f143d6a807a7cda59c34078c7ad88237f1f26684c31d4f6847b5474e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Controlled release</topic><topic>Copolymerization</topic><topic>double‐emulsion drops</topic><topic>Drug carriers</topic><topic>Encapsulation</topic><topic>Hydrogels</topic><topic>LCST</topic><topic>Materials science</topic><topic>Membranes</topic><topic>microcapsules</topic><topic>Microencapsulation</topic><topic>Microfluidics</topic><topic>Microreactors</topic><topic>Nanoparticles</topic><topic>Penetration</topic><topic>Phase transitions</topic><topic>Swelling</topic><topic>Temperature control</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Ye Hun</creatorcontrib><creatorcontrib>Hwang, Ji‐Su</creatorcontrib><creatorcontrib>Han, Sang Hoon</creatorcontrib><creatorcontrib>Lee, Chang‐Soo</creatorcontrib><creatorcontrib>Jeon, Seog‐Jin</creatorcontrib><creatorcontrib>Kim, Shin‐Hyun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Ye Hun</au><au>Hwang, Ji‐Su</au><au>Han, Sang Hoon</au><au>Lee, Chang‐Soo</au><au>Jeon, Seog‐Jin</au><au>Kim, Shin‐Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo‐Responsive Microcapsules with Tunable Molecular Permeability for Controlled Encapsulation and Release</atitle><jtitle>Advanced functional materials</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Microcapsules with regulated transmembrane transport are of great importance for various applications. The membranes with a tunable cut‐off threshold of permeation provide advanced functionality. Here, thermo‐responsive microcapsules are designed, whose hydrogel membrane shows a tunable cut‐off threshold of permeation with temperature. To produce the microcapsules, water‐in‐oil‐in‐water (W/O/W) double‐emulsion droplets are microfluidically produced, whose oil shell contains oil‐soluble hydrogel precursor of poly(N, N‐diethylacrylamide) copolymerized with benzophenone (PDEAM‐BP). The PDEAM hydrogels, crosslinked by BP, show volume‐phase transition around 34 °C, which makes the microcapsules with the PDEAM hydrogel membrane thermo‐responsive. The microcapsules show temperature‐dependent changes in radius and membrane thickness. More importantly, the cut‐off threshold of permeation can be reversibly adjusted by temperature control as the degree of swelling decreases with temperature. This enables the molecule‐selective encapsulation and the controlled release of the encapsulants in a programmed manner by adjusting the temperature. The microcapsules can be rendered to be photo‐responsive by encapsulating photothermal polydopamine nanoparticles during the microfluidic operation, which allows the control of the degree of swelling with near‐infrared (NIR) irradiation. The thermo‐ and photo‐responsive microcapsules with a tunable cut‐off threshold are appealing as a new platform for drug carriers, microreactors, and microsensors.
Microcapsules with thermo‐responsive membranes are designed using water‐in‐oil‐in‐water double‐emulsion templates with an oil‐soluble hydrogel precursor. The microcapsules show molecular‐size‐selective transmembrane permeation due to the consistent mesh size of the hydrogel membrane. Moreover, the cut‐off threshold can be controlled by temperature. The thermo‐responsive microcapsules provide molecule‐selective encapsulation without leakage and controlled release of the encapsulants in a programmed manner.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202100782</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4095-5779</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-06, Vol.31 (24), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2539490494 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Controlled release Copolymerization double‐emulsion drops Drug carriers Encapsulation Hydrogels LCST Materials science Membranes microcapsules Microencapsulation Microfluidics Microreactors Nanoparticles Penetration Phase transitions Swelling Temperature control Temperature dependence |
title | Thermo‐Responsive Microcapsules with Tunable Molecular Permeability for Controlled Encapsulation and Release |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo%E2%80%90Responsive%20Microcapsules%20with%20Tunable%20Molecular%20Permeability%20for%20Controlled%20Encapsulation%20and%20Release&rft.jtitle=Advanced%20functional%20materials&rft.au=Choi,%20Ye%20Hun&rft.date=2021-06-01&rft.volume=31&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202100782&rft_dat=%3Cproquest_cross%3E2539490494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539490494&rft_id=info:pmid/&rfr_iscdi=true |