The effects of astragalus polysaccharides on the growth, heat stress tolerance and related gene expression of the leech Whitmania pigra

Whitmania pigra is an aquatic annelid with broad pharmacological effects and is widely used for treatment of cardiovascular diseases in Asia. One of the main factors limiting its commercial production is its weak heat stress tolerance. To assess the effects of astragalus polysaccharide (APS) on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture research 2021-07, Vol.52 (7), p.3247-3255
Hauptverfasser: Shi, Hong‐zhuan, Wu, Bing, Shi, Guo‐wei, Zhu, Zai‐biao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3255
container_issue 7
container_start_page 3247
container_title Aquaculture research
container_volume 52
creator Shi, Hong‐zhuan
Wu, Bing
Shi, Guo‐wei
Zhu, Zai‐biao
description Whitmania pigra is an aquatic annelid with broad pharmacological effects and is widely used for treatment of cardiovascular diseases in Asia. One of the main factors limiting its commercial production is its weak heat stress tolerance. To assess the effects of astragalus polysaccharide (APS) on the growth and heat stress tolerance of W. pigra and the underlying mechanisms, six APS concentration treatments (0‰, 0.01‰, 0.03‰, 0.05‰, 0.07‰ and 0.09‰) were formulated to explore their influence on growth, digestive enzymes and the expression of immune‐ and growth‐related genes at 26°C or 35°C. The results showed that APS significantly enhanced the final weight, weight gain rate, specific growth rate, digestive enzyme and anti‐reverse enzyme activity, and the relative expression level of growth hormone, insulin‐like growth factor‐1 and digestive enzyme‐related genes. The 0.07‰ APS group showed significantly greater values than the other groups (p 
doi_str_mv 10.1111/are.15170
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539483081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539483081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-bf026ca2ceaa78e4dd1a11a17470741fba6fdc1d5407e001befab27f5906b4773</originalsourceid><addsrcrecordid>eNp1kN9LwzAQx4MoOKcP_gcBnwS7JW3TbI9jzB8gCDLRt3BNL21H19YkY-4v8N82db56HNzBfe573JeQa84mPMQULE644JKdkBFPMhHFnM1Ph16ISAj5cU4unNswxlOW8BH5XldI0RjU3tHOUHDeQgnNztG-aw4OtK7A1gWGaUt9gEvb7X11RysETwONzlHfNWih1UihLajFBjwWtMQ2aH_1A1KH7SA_CDSIuqLvVe230NZA-7q0cEnODDQOr_7qmLzdr9bLx-j55eFpuXiOdJLELMoNizMNsUYAOcO0KDjwkDKVTKbc5JCZQvNCpExieDJHA3ksjZizLE-lTMbk5qjb2-5zh86rTbezbTipYpHM01nCZjxQt0dK2845i0b1tt6CPSjO1OCzCj6rX58DOz2y-7rBw_-gWryujhs_3gWBbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539483081</pqid></control><display><type>article</type><title>The effects of astragalus polysaccharides on the growth, heat stress tolerance and related gene expression of the leech Whitmania pigra</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Hong‐zhuan ; Wu, Bing ; Shi, Guo‐wei ; Zhu, Zai‐biao</creator><creatorcontrib>Shi, Hong‐zhuan ; Wu, Bing ; Shi, Guo‐wei ; Zhu, Zai‐biao</creatorcontrib><description>Whitmania pigra is an aquatic annelid with broad pharmacological effects and is widely used for treatment of cardiovascular diseases in Asia. One of the main factors limiting its commercial production is its weak heat stress tolerance. To assess the effects of astragalus polysaccharide (APS) on the growth and heat stress tolerance of W. pigra and the underlying mechanisms, six APS concentration treatments (0‰, 0.01‰, 0.03‰, 0.05‰, 0.07‰ and 0.09‰) were formulated to explore their influence on growth, digestive enzymes and the expression of immune‐ and growth‐related genes at 26°C or 35°C. The results showed that APS significantly enhanced the final weight, weight gain rate, specific growth rate, digestive enzyme and anti‐reverse enzyme activity, and the relative expression level of growth hormone, insulin‐like growth factor‐1 and digestive enzyme‐related genes. The 0.07‰ APS group showed significantly greater values than the other groups (p &lt; 0.05). APS up‐regulated the relative expression of HSP70 and immune‐related genes under heat stress, and the 0.07‰ group showed the greatest modulatory effect. Overall, APS can promote growth, immunity and heat stress resistance in W. pigra, and the recommendation dietary APS level was 0.07‰.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.15170</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>anti‐reverse enzyme ; Body weight gain ; Cardiovascular diseases ; Digestive enzymes ; Enzymatic activity ; Enzyme activity ; Enzymes ; Gene expression ; Genes ; Growth factors ; Growth hormones ; growth performance ; Growth rate ; Heat ; Heat stress ; Heat tolerance ; Hormones ; Hsp70 protein ; Immunity ; Immunological tolerance ; Insulin ; nonspecific immunity ; Polysaccharides ; Saccharides ; Weight gain ; Whitmania pigra</subject><ispartof>Aquaculture research, 2021-07, Vol.52 (7), p.3247-3255</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-bf026ca2ceaa78e4dd1a11a17470741fba6fdc1d5407e001befab27f5906b4773</citedby><cites>FETCH-LOGICAL-c3320-bf026ca2ceaa78e4dd1a11a17470741fba6fdc1d5407e001befab27f5906b4773</cites><orcidid>0000-0002-3925-4767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.15170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.15170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Shi, Hong‐zhuan</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Shi, Guo‐wei</creatorcontrib><creatorcontrib>Zhu, Zai‐biao</creatorcontrib><title>The effects of astragalus polysaccharides on the growth, heat stress tolerance and related gene expression of the leech Whitmania pigra</title><title>Aquaculture research</title><description>Whitmania pigra is an aquatic annelid with broad pharmacological effects and is widely used for treatment of cardiovascular diseases in Asia. One of the main factors limiting its commercial production is its weak heat stress tolerance. To assess the effects of astragalus polysaccharide (APS) on the growth and heat stress tolerance of W. pigra and the underlying mechanisms, six APS concentration treatments (0‰, 0.01‰, 0.03‰, 0.05‰, 0.07‰ and 0.09‰) were formulated to explore their influence on growth, digestive enzymes and the expression of immune‐ and growth‐related genes at 26°C or 35°C. The results showed that APS significantly enhanced the final weight, weight gain rate, specific growth rate, digestive enzyme and anti‐reverse enzyme activity, and the relative expression level of growth hormone, insulin‐like growth factor‐1 and digestive enzyme‐related genes. The 0.07‰ APS group showed significantly greater values than the other groups (p &lt; 0.05). APS up‐regulated the relative expression of HSP70 and immune‐related genes under heat stress, and the 0.07‰ group showed the greatest modulatory effect. Overall, APS can promote growth, immunity and heat stress resistance in W. pigra, and the recommendation dietary APS level was 0.07‰.</description><subject>anti‐reverse enzyme</subject><subject>Body weight gain</subject><subject>Cardiovascular diseases</subject><subject>Digestive enzymes</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Growth factors</subject><subject>Growth hormones</subject><subject>growth performance</subject><subject>Growth rate</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Hormones</subject><subject>Hsp70 protein</subject><subject>Immunity</subject><subject>Immunological tolerance</subject><subject>Insulin</subject><subject>nonspecific immunity</subject><subject>Polysaccharides</subject><subject>Saccharides</subject><subject>Weight gain</subject><subject>Whitmania pigra</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kN9LwzAQx4MoOKcP_gcBnwS7JW3TbI9jzB8gCDLRt3BNL21H19YkY-4v8N82db56HNzBfe573JeQa84mPMQULE644JKdkBFPMhHFnM1Ph16ISAj5cU4unNswxlOW8BH5XldI0RjU3tHOUHDeQgnNztG-aw4OtK7A1gWGaUt9gEvb7X11RysETwONzlHfNWih1UihLajFBjwWtMQ2aH_1A1KH7SA_CDSIuqLvVe230NZA-7q0cEnODDQOr_7qmLzdr9bLx-j55eFpuXiOdJLELMoNizMNsUYAOcO0KDjwkDKVTKbc5JCZQvNCpExieDJHA3ksjZizLE-lTMbk5qjb2-5zh86rTbezbTipYpHM01nCZjxQt0dK2845i0b1tt6CPSjO1OCzCj6rX58DOz2y-7rBw_-gWryujhs_3gWBbA</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Shi, Hong‐zhuan</creator><creator>Wu, Bing</creator><creator>Shi, Guo‐wei</creator><creator>Zhu, Zai‐biao</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-3925-4767</orcidid></search><sort><creationdate>202107</creationdate><title>The effects of astragalus polysaccharides on the growth, heat stress tolerance and related gene expression of the leech Whitmania pigra</title><author>Shi, Hong‐zhuan ; Wu, Bing ; Shi, Guo‐wei ; Zhu, Zai‐biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-bf026ca2ceaa78e4dd1a11a17470741fba6fdc1d5407e001befab27f5906b4773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anti‐reverse enzyme</topic><topic>Body weight gain</topic><topic>Cardiovascular diseases</topic><topic>Digestive enzymes</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Growth factors</topic><topic>Growth hormones</topic><topic>growth performance</topic><topic>Growth rate</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Hormones</topic><topic>Hsp70 protein</topic><topic>Immunity</topic><topic>Immunological tolerance</topic><topic>Insulin</topic><topic>nonspecific immunity</topic><topic>Polysaccharides</topic><topic>Saccharides</topic><topic>Weight gain</topic><topic>Whitmania pigra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Hong‐zhuan</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Shi, Guo‐wei</creatorcontrib><creatorcontrib>Zhu, Zai‐biao</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Hong‐zhuan</au><au>Wu, Bing</au><au>Shi, Guo‐wei</au><au>Zhu, Zai‐biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of astragalus polysaccharides on the growth, heat stress tolerance and related gene expression of the leech Whitmania pigra</atitle><jtitle>Aquaculture research</jtitle><date>2021-07</date><risdate>2021</risdate><volume>52</volume><issue>7</issue><spage>3247</spage><epage>3255</epage><pages>3247-3255</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>Whitmania pigra is an aquatic annelid with broad pharmacological effects and is widely used for treatment of cardiovascular diseases in Asia. One of the main factors limiting its commercial production is its weak heat stress tolerance. To assess the effects of astragalus polysaccharide (APS) on the growth and heat stress tolerance of W. pigra and the underlying mechanisms, six APS concentration treatments (0‰, 0.01‰, 0.03‰, 0.05‰, 0.07‰ and 0.09‰) were formulated to explore their influence on growth, digestive enzymes and the expression of immune‐ and growth‐related genes at 26°C or 35°C. The results showed that APS significantly enhanced the final weight, weight gain rate, specific growth rate, digestive enzyme and anti‐reverse enzyme activity, and the relative expression level of growth hormone, insulin‐like growth factor‐1 and digestive enzyme‐related genes. The 0.07‰ APS group showed significantly greater values than the other groups (p &lt; 0.05). APS up‐regulated the relative expression of HSP70 and immune‐related genes under heat stress, and the 0.07‰ group showed the greatest modulatory effect. Overall, APS can promote growth, immunity and heat stress resistance in W. pigra, and the recommendation dietary APS level was 0.07‰.</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.15170</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3925-4767</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-557X
ispartof Aquaculture research, 2021-07, Vol.52 (7), p.3247-3255
issn 1355-557X
1365-2109
language eng
recordid cdi_proquest_journals_2539483081
source Wiley Online Library Journals Frontfile Complete
subjects anti‐reverse enzyme
Body weight gain
Cardiovascular diseases
Digestive enzymes
Enzymatic activity
Enzyme activity
Enzymes
Gene expression
Genes
Growth factors
Growth hormones
growth performance
Growth rate
Heat
Heat stress
Heat tolerance
Hormones
Hsp70 protein
Immunity
Immunological tolerance
Insulin
nonspecific immunity
Polysaccharides
Saccharides
Weight gain
Whitmania pigra
title The effects of astragalus polysaccharides on the growth, heat stress tolerance and related gene expression of the leech Whitmania pigra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20astragalus%20polysaccharides%20on%20the%20growth,%20heat%20stress%20tolerance%20and%20related%20gene%20expression%20of%20the%20leech%20Whitmania%20pigra&rft.jtitle=Aquaculture%20research&rft.au=Shi,%20Hong%E2%80%90zhuan&rft.date=2021-07&rft.volume=52&rft.issue=7&rft.spage=3247&rft.epage=3255&rft.pages=3247-3255&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.15170&rft_dat=%3Cproquest_cross%3E2539483081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539483081&rft_id=info:pmid/&rfr_iscdi=true