Architecting Amorphous Vanadium Oxide/MXene Nanohybrid via Tunable Anodic Oxidation for High‐Performance Sodium‐Ion Batteries

Structural engineering and creating atomic disorder in electrodes are promising strategies for highly efficient and rapid charge storage in advanced batteries. Herein, a nanohybrid architecture is presented with amorphous vanadium oxide conformally coated on layered V2C MXene (a‐VOx/V2C) via tunable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-06, Vol.11 (22), p.n/a
Hauptverfasser: Zhang, Wang, Peng, Jian, Hua, Weibo, Liu, Ying, Wang, Jinsong, Liang, Yaru, Lai, Weihong, Jiang, Yue, Huang, Yang, Zhang, Wei, Yang, Huiling, Yang, Yingguo, Li, Lina, Liu, Zhenjie, Wang, Lei, Chou, Shu‐Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page
container_title Advanced energy materials
container_volume 11
creator Zhang, Wang
Peng, Jian
Hua, Weibo
Liu, Ying
Wang, Jinsong
Liang, Yaru
Lai, Weihong
Jiang, Yue
Huang, Yang
Zhang, Wei
Yang, Huiling
Yang, Yingguo
Li, Lina
Liu, Zhenjie
Wang, Lei
Chou, Shu‐Lei
description Structural engineering and creating atomic disorder in electrodes are promising strategies for highly efficient and rapid charge storage in advanced batteries. Herein, a nanohybrid architecture is presented with amorphous vanadium oxide conformally coated on layered V2C MXene (a‐VOx/V2C) via tunable anodic oxidation, which exhibits a high reversible capacity of 307 mAh g–1 at 50 mA g–1, decent rate capability with capacity up to 96 mAh g–1 at 2000 mA g–1, and good cycling stability as a cathode for sodium‐ion batteries. The a‐VOx layer enables reversible and fast Na+ insertion/extraction by providing sufficient vacancies and open pathways in the amorphous framework, unlike the irreversible phase transition in its crystalline counterpart, while layered V2C MXene offers abundant electron/ion transfer channels, which are joined together to boost the electrochemical performance. Notably the improved reversibility and structural superiority of the a‐VOx/V2C nanohybrid are clearly revealed by in situ Raman, in situ transmission electron microscopy, in situ synchrotron X‐ray absorption spectroscopy, and density functional theory calculations, demonstrating a reversible V–O vibration and valence oscillation between V4+ and V5+ in the disordered framework, with robust structural stability and unobstructed Na+ diffusion. This work provides a meaningful reference for the elaborate design of MXene‐based nanostructured electrodes toward advanced rechargeable batteries. A nanohybrid structured electrode with amorphous vanadium oxide conformally coated on layered V2C MXene is fabricated via tunable anodic oxidization in an aqueous electrolyte, which is joined together to provide sufficient vacancies and open pathways as well as abundant electron/ion transfer channels for highly efficient and rapid Na+ storage in sodium‐ion batteries.
doi_str_mv 10.1002/aenm.202100757
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539445060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539445060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3547-4e7651dcf440f95d59b7c0570ff5e76088751855455f130ecd54bb49fd7777d13</originalsourceid><addsrcrecordid>eNqFkMlOwzAQhiMEElXplbMlzmntxM5yDFWhlbogURC3yPHSuGrs4iRAb_AGPCNPgktROTKX2b5_Rvo97xLBPoIwGFChq34AA9fEJD7xOihC2I8SDE-PdRice726XkMXOEUwDDveR2ZZqRrBGqVXIKuM3ZamrcEj1ZSrtgKLN8XFYPYktABzqk25K6zi4EVRsGw1LTYCZNpwxX5I2iijgTQWjNWq_Hr_vBPWdRXVTIB7s7_ohhPHXNOmEVaJ-sI7k3RTi95v7noPN6PlcOxPF7eTYTb1WUhw7GMRRwRxJjGGMiWcpEXMIImhlMStYJLEBCWEYEIkCqFgnOCiwKnksQuOwq53dbi7tea5FXWTr01rtXuZByRMMSYwgo7qHyhmTV1bIfOtVRW1uxzBfO90vnc6PzrtBOlB8Ko2YvcPnWej-exP-w2WA4TC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539445060</pqid></control><display><type>article</type><title>Architecting Amorphous Vanadium Oxide/MXene Nanohybrid via Tunable Anodic Oxidation for High‐Performance Sodium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Wang ; Peng, Jian ; Hua, Weibo ; Liu, Ying ; Wang, Jinsong ; Liang, Yaru ; Lai, Weihong ; Jiang, Yue ; Huang, Yang ; Zhang, Wei ; Yang, Huiling ; Yang, Yingguo ; Li, Lina ; Liu, Zhenjie ; Wang, Lei ; Chou, Shu‐Lei</creator><creatorcontrib>Zhang, Wang ; Peng, Jian ; Hua, Weibo ; Liu, Ying ; Wang, Jinsong ; Liang, Yaru ; Lai, Weihong ; Jiang, Yue ; Huang, Yang ; Zhang, Wei ; Yang, Huiling ; Yang, Yingguo ; Li, Lina ; Liu, Zhenjie ; Wang, Lei ; Chou, Shu‐Lei</creatorcontrib><description>Structural engineering and creating atomic disorder in electrodes are promising strategies for highly efficient and rapid charge storage in advanced batteries. Herein, a nanohybrid architecture is presented with amorphous vanadium oxide conformally coated on layered V2C MXene (a‐VOx/V2C) via tunable anodic oxidation, which exhibits a high reversible capacity of 307 mAh g–1 at 50 mA g–1, decent rate capability with capacity up to 96 mAh g–1 at 2000 mA g–1, and good cycling stability as a cathode for sodium‐ion batteries. The a‐VOx layer enables reversible and fast Na+ insertion/extraction by providing sufficient vacancies and open pathways in the amorphous framework, unlike the irreversible phase transition in its crystalline counterpart, while layered V2C MXene offers abundant electron/ion transfer channels, which are joined together to boost the electrochemical performance. Notably the improved reversibility and structural superiority of the a‐VOx/V2C nanohybrid are clearly revealed by in situ Raman, in situ transmission electron microscopy, in situ synchrotron X‐ray absorption spectroscopy, and density functional theory calculations, demonstrating a reversible V–O vibration and valence oscillation between V4+ and V5+ in the disordered framework, with robust structural stability and unobstructed Na+ diffusion. This work provides a meaningful reference for the elaborate design of MXene‐based nanostructured electrodes toward advanced rechargeable batteries. A nanohybrid structured electrode with amorphous vanadium oxide conformally coated on layered V2C MXene is fabricated via tunable anodic oxidization in an aqueous electrolyte, which is joined together to provide sufficient vacancies and open pathways as well as abundant electron/ion transfer channels for highly efficient and rapid Na+ storage in sodium‐ion batteries.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202100757</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>amorphous materials ; Anodizing ; Batteries ; Density functional theory ; Electrochemical analysis ; layered MXene ; MXenes ; nanohybrid ; Oxidation ; Phase transitions ; Rechargeable batteries ; Sodium-ion batteries ; Storage batteries ; Structural engineering ; Structural stability ; Synchrotrons ; tunable anodic oxidation ; vanadium oxide ; Vanadium oxides</subject><ispartof>Advanced energy materials, 2021-06, Vol.11 (22), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3547-4e7651dcf440f95d59b7c0570ff5e76088751855455f130ecd54bb49fd7777d13</citedby><cites>FETCH-LOGICAL-c3547-4e7651dcf440f95d59b7c0570ff5e76088751855455f130ecd54bb49fd7777d13</cites><orcidid>0000-0002-5180-3618 ; 0000-0002-4624-054X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202100757$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202100757$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Wang</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Hua, Weibo</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Wang, Jinsong</creatorcontrib><creatorcontrib>Liang, Yaru</creatorcontrib><creatorcontrib>Lai, Weihong</creatorcontrib><creatorcontrib>Jiang, Yue</creatorcontrib><creatorcontrib>Huang, Yang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Huiling</creatorcontrib><creatorcontrib>Yang, Yingguo</creatorcontrib><creatorcontrib>Li, Lina</creatorcontrib><creatorcontrib>Liu, Zhenjie</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><title>Architecting Amorphous Vanadium Oxide/MXene Nanohybrid via Tunable Anodic Oxidation for High‐Performance Sodium‐Ion Batteries</title><title>Advanced energy materials</title><description>Structural engineering and creating atomic disorder in electrodes are promising strategies for highly efficient and rapid charge storage in advanced batteries. Herein, a nanohybrid architecture is presented with amorphous vanadium oxide conformally coated on layered V2C MXene (a‐VOx/V2C) via tunable anodic oxidation, which exhibits a high reversible capacity of 307 mAh g–1 at 50 mA g–1, decent rate capability with capacity up to 96 mAh g–1 at 2000 mA g–1, and good cycling stability as a cathode for sodium‐ion batteries. The a‐VOx layer enables reversible and fast Na+ insertion/extraction by providing sufficient vacancies and open pathways in the amorphous framework, unlike the irreversible phase transition in its crystalline counterpart, while layered V2C MXene offers abundant electron/ion transfer channels, which are joined together to boost the electrochemical performance. Notably the improved reversibility and structural superiority of the a‐VOx/V2C nanohybrid are clearly revealed by in situ Raman, in situ transmission electron microscopy, in situ synchrotron X‐ray absorption spectroscopy, and density functional theory calculations, demonstrating a reversible V–O vibration and valence oscillation between V4+ and V5+ in the disordered framework, with robust structural stability and unobstructed Na+ diffusion. This work provides a meaningful reference for the elaborate design of MXene‐based nanostructured electrodes toward advanced rechargeable batteries. A nanohybrid structured electrode with amorphous vanadium oxide conformally coated on layered V2C MXene is fabricated via tunable anodic oxidization in an aqueous electrolyte, which is joined together to provide sufficient vacancies and open pathways as well as abundant electron/ion transfer channels for highly efficient and rapid Na+ storage in sodium‐ion batteries.</description><subject>amorphous materials</subject><subject>Anodizing</subject><subject>Batteries</subject><subject>Density functional theory</subject><subject>Electrochemical analysis</subject><subject>layered MXene</subject><subject>MXenes</subject><subject>nanohybrid</subject><subject>Oxidation</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><subject>Structural engineering</subject><subject>Structural stability</subject><subject>Synchrotrons</subject><subject>tunable anodic oxidation</subject><subject>vanadium oxide</subject><subject>Vanadium oxides</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAQhiMEElXplbMlzmntxM5yDFWhlbogURC3yPHSuGrs4iRAb_AGPCNPgktROTKX2b5_Rvo97xLBPoIwGFChq34AA9fEJD7xOihC2I8SDE-PdRice726XkMXOEUwDDveR2ZZqRrBGqVXIKuM3ZamrcEj1ZSrtgKLN8XFYPYktABzqk25K6zi4EVRsGw1LTYCZNpwxX5I2iijgTQWjNWq_Hr_vBPWdRXVTIB7s7_ohhPHXNOmEVaJ-sI7k3RTi95v7noPN6PlcOxPF7eTYTb1WUhw7GMRRwRxJjGGMiWcpEXMIImhlMStYJLEBCWEYEIkCqFgnOCiwKnksQuOwq53dbi7tea5FXWTr01rtXuZByRMMSYwgo7qHyhmTV1bIfOtVRW1uxzBfO90vnc6PzrtBOlB8Ko2YvcPnWej-exP-w2WA4TC</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Wang</creator><creator>Peng, Jian</creator><creator>Hua, Weibo</creator><creator>Liu, Ying</creator><creator>Wang, Jinsong</creator><creator>Liang, Yaru</creator><creator>Lai, Weihong</creator><creator>Jiang, Yue</creator><creator>Huang, Yang</creator><creator>Zhang, Wei</creator><creator>Yang, Huiling</creator><creator>Yang, Yingguo</creator><creator>Li, Lina</creator><creator>Liu, Zhenjie</creator><creator>Wang, Lei</creator><creator>Chou, Shu‐Lei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5180-3618</orcidid><orcidid>https://orcid.org/0000-0002-4624-054X</orcidid></search><sort><creationdate>20210601</creationdate><title>Architecting Amorphous Vanadium Oxide/MXene Nanohybrid via Tunable Anodic Oxidation for High‐Performance Sodium‐Ion Batteries</title><author>Zhang, Wang ; Peng, Jian ; Hua, Weibo ; Liu, Ying ; Wang, Jinsong ; Liang, Yaru ; Lai, Weihong ; Jiang, Yue ; Huang, Yang ; Zhang, Wei ; Yang, Huiling ; Yang, Yingguo ; Li, Lina ; Liu, Zhenjie ; Wang, Lei ; Chou, Shu‐Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3547-4e7651dcf440f95d59b7c0570ff5e76088751855455f130ecd54bb49fd7777d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>amorphous materials</topic><topic>Anodizing</topic><topic>Batteries</topic><topic>Density functional theory</topic><topic>Electrochemical analysis</topic><topic>layered MXene</topic><topic>MXenes</topic><topic>nanohybrid</topic><topic>Oxidation</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><topic>Structural engineering</topic><topic>Structural stability</topic><topic>Synchrotrons</topic><topic>tunable anodic oxidation</topic><topic>vanadium oxide</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wang</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Hua, Weibo</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Wang, Jinsong</creatorcontrib><creatorcontrib>Liang, Yaru</creatorcontrib><creatorcontrib>Lai, Weihong</creatorcontrib><creatorcontrib>Jiang, Yue</creatorcontrib><creatorcontrib>Huang, Yang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Huiling</creatorcontrib><creatorcontrib>Yang, Yingguo</creatorcontrib><creatorcontrib>Li, Lina</creatorcontrib><creatorcontrib>Liu, Zhenjie</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wang</au><au>Peng, Jian</au><au>Hua, Weibo</au><au>Liu, Ying</au><au>Wang, Jinsong</au><au>Liang, Yaru</au><au>Lai, Weihong</au><au>Jiang, Yue</au><au>Huang, Yang</au><au>Zhang, Wei</au><au>Yang, Huiling</au><au>Yang, Yingguo</au><au>Li, Lina</au><au>Liu, Zhenjie</au><au>Wang, Lei</au><au>Chou, Shu‐Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecting Amorphous Vanadium Oxide/MXene Nanohybrid via Tunable Anodic Oxidation for High‐Performance Sodium‐Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>22</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Structural engineering and creating atomic disorder in electrodes are promising strategies for highly efficient and rapid charge storage in advanced batteries. Herein, a nanohybrid architecture is presented with amorphous vanadium oxide conformally coated on layered V2C MXene (a‐VOx/V2C) via tunable anodic oxidation, which exhibits a high reversible capacity of 307 mAh g–1 at 50 mA g–1, decent rate capability with capacity up to 96 mAh g–1 at 2000 mA g–1, and good cycling stability as a cathode for sodium‐ion batteries. The a‐VOx layer enables reversible and fast Na+ insertion/extraction by providing sufficient vacancies and open pathways in the amorphous framework, unlike the irreversible phase transition in its crystalline counterpart, while layered V2C MXene offers abundant electron/ion transfer channels, which are joined together to boost the electrochemical performance. Notably the improved reversibility and structural superiority of the a‐VOx/V2C nanohybrid are clearly revealed by in situ Raman, in situ transmission electron microscopy, in situ synchrotron X‐ray absorption spectroscopy, and density functional theory calculations, demonstrating a reversible V–O vibration and valence oscillation between V4+ and V5+ in the disordered framework, with robust structural stability and unobstructed Na+ diffusion. This work provides a meaningful reference for the elaborate design of MXene‐based nanostructured electrodes toward advanced rechargeable batteries. A nanohybrid structured electrode with amorphous vanadium oxide conformally coated on layered V2C MXene is fabricated via tunable anodic oxidization in an aqueous electrolyte, which is joined together to provide sufficient vacancies and open pathways as well as abundant electron/ion transfer channels for highly efficient and rapid Na+ storage in sodium‐ion batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202100757</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5180-3618</orcidid><orcidid>https://orcid.org/0000-0002-4624-054X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-06, Vol.11 (22), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2539445060
source Wiley Online Library Journals Frontfile Complete
subjects amorphous materials
Anodizing
Batteries
Density functional theory
Electrochemical analysis
layered MXene
MXenes
nanohybrid
Oxidation
Phase transitions
Rechargeable batteries
Sodium-ion batteries
Storage batteries
Structural engineering
Structural stability
Synchrotrons
tunable anodic oxidation
vanadium oxide
Vanadium oxides
title Architecting Amorphous Vanadium Oxide/MXene Nanohybrid via Tunable Anodic Oxidation for High‐Performance Sodium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecting%20Amorphous%20Vanadium%20Oxide/MXene%20Nanohybrid%20via%20Tunable%20Anodic%20Oxidation%20for%20High%E2%80%90Performance%20Sodium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhang,%20Wang&rft.date=2021-06-01&rft.volume=11&rft.issue=22&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202100757&rft_dat=%3Cproquest_cross%3E2539445060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539445060&rft_id=info:pmid/&rfr_iscdi=true