A Lightweight and Gradient-Stable Neural Layer

To enhance resource efficiency and model deployability of neural networks, we propose a neural-layer architecture based on Householder weighting and absolute-value activating, called Householder-absolute neural layer or simply Han-layer. Compared to a fully connected layer with \(d\)-neurons and \(d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Yu, Yueyao, Zhang, Yin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yu, Yueyao
Zhang, Yin
description To enhance resource efficiency and model deployability of neural networks, we propose a neural-layer architecture based on Householder weighting and absolute-value activating, called Householder-absolute neural layer or simply Han-layer. Compared to a fully connected layer with \(d\)-neurons and \(d\) outputs, a Han-layer reduces the number of parameters and the corresponding computational complexity from \(O(d^2)\) to \(O(d)\). {The Han-layer structure guarantees that the Jacobian of the layer function is always orthogonal, thus ensuring gradient stability (i.e., free of gradient vanishing or exploding issues) for any Han-layer sub-networks.} Extensive numerical experiments show that one can strategically use Han-layers to replace fully connected (FC) layers, reducing the number of model parameters while maintaining or even improving the generalization performance. We will also showcase the capabilities of the Han-layer architecture on a few small stylized models, and discuss its current limitations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2539392744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539392744</sourcerecordid><originalsourceid>FETCH-proquest_journals_25393927443</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc1TwyUzPKClPBZEKiXkpCu5FiSmZqXklusEliUk5qQp-qaVFiTkKPomVqUU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGpsaWxpZG5iYkycKgCp8THB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539392744</pqid></control><display><type>article</type><title>A Lightweight and Gradient-Stable Neural Layer</title><source>Free E- Journals</source><creator>Yu, Yueyao ; Zhang, Yin</creator><creatorcontrib>Yu, Yueyao ; Zhang, Yin</creatorcontrib><description>To enhance resource efficiency and model deployability of neural networks, we propose a neural-layer architecture based on Householder weighting and absolute-value activating, called Householder-absolute neural layer or simply Han-layer. Compared to a fully connected layer with \(d\)-neurons and \(d\) outputs, a Han-layer reduces the number of parameters and the corresponding computational complexity from \(O(d^2)\) to \(O(d)\). {The Han-layer structure guarantees that the Jacobian of the layer function is always orthogonal, thus ensuring gradient stability (i.e., free of gradient vanishing or exploding issues) for any Han-layer sub-networks.} Extensive numerical experiments show that one can strategically use Han-layers to replace fully connected (FC) layers, reducing the number of model parameters while maintaining or even improving the generalization performance. We will also showcase the capabilities of the Han-layer architecture on a few small stylized models, and discuss its current limitations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Datasets ; Neural networks ; Reflectors</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Yu, Yueyao</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><title>A Lightweight and Gradient-Stable Neural Layer</title><title>arXiv.org</title><description>To enhance resource efficiency and model deployability of neural networks, we propose a neural-layer architecture based on Householder weighting and absolute-value activating, called Householder-absolute neural layer or simply Han-layer. Compared to a fully connected layer with \(d\)-neurons and \(d\) outputs, a Han-layer reduces the number of parameters and the corresponding computational complexity from \(O(d^2)\) to \(O(d)\). {The Han-layer structure guarantees that the Jacobian of the layer function is always orthogonal, thus ensuring gradient stability (i.e., free of gradient vanishing or exploding issues) for any Han-layer sub-networks.} Extensive numerical experiments show that one can strategically use Han-layers to replace fully connected (FC) layers, reducing the number of model parameters while maintaining or even improving the generalization performance. We will also showcase the capabilities of the Han-layer architecture on a few small stylized models, and discuss its current limitations.</description><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Neural networks</subject><subject>Reflectors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQc1TwyUzPKClPBZEKiXkpCu5FiSmZqXklusEliUk5qQp-qaVFiTkKPomVqUU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGpsaWxpZG5iYkycKgCp8THB</recordid><startdate>20240326</startdate><enddate>20240326</enddate><creator>Yu, Yueyao</creator><creator>Zhang, Yin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240326</creationdate><title>A Lightweight and Gradient-Stable Neural Layer</title><author>Yu, Yueyao ; Zhang, Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25393927443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Neural networks</topic><topic>Reflectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yueyao</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yueyao</au><au>Zhang, Yin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Lightweight and Gradient-Stable Neural Layer</atitle><jtitle>arXiv.org</jtitle><date>2024-03-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>To enhance resource efficiency and model deployability of neural networks, we propose a neural-layer architecture based on Householder weighting and absolute-value activating, called Householder-absolute neural layer or simply Han-layer. Compared to a fully connected layer with \(d\)-neurons and \(d\) outputs, a Han-layer reduces the number of parameters and the corresponding computational complexity from \(O(d^2)\) to \(O(d)\). {The Han-layer structure guarantees that the Jacobian of the layer function is always orthogonal, thus ensuring gradient stability (i.e., free of gradient vanishing or exploding issues) for any Han-layer sub-networks.} Extensive numerical experiments show that one can strategically use Han-layers to replace fully connected (FC) layers, reducing the number of model parameters while maintaining or even improving the generalization performance. We will also showcase the capabilities of the Han-layer architecture on a few small stylized models, and discuss its current limitations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2539392744
source Free E- Journals
subjects Artificial neural networks
Datasets
Neural networks
Reflectors
title A Lightweight and Gradient-Stable Neural Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Lightweight%20and%20Gradient-Stable%20Neural%20Layer&rft.jtitle=arXiv.org&rft.au=Yu,%20Yueyao&rft.date=2024-03-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2539392744%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539392744&rft_id=info:pmid/&rfr_iscdi=true