A Lightweight and Gradient-Stable Neural Layer
To enhance resource efficiency and model deployability of neural networks, we propose a neural-layer architecture based on Householder weighting and absolute-value activating, called Householder-absolute neural layer or simply Han-layer. Compared to a fully connected layer with \(d\)-neurons and \(d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To enhance resource efficiency and model deployability of neural networks, we propose a neural-layer architecture based on Householder weighting and absolute-value activating, called Householder-absolute neural layer or simply Han-layer. Compared to a fully connected layer with \(d\)-neurons and \(d\) outputs, a Han-layer reduces the number of parameters and the corresponding computational complexity from \(O(d^2)\) to \(O(d)\). {The Han-layer structure guarantees that the Jacobian of the layer function is always orthogonal, thus ensuring gradient stability (i.e., free of gradient vanishing or exploding issues) for any Han-layer sub-networks.} Extensive numerical experiments show that one can strategically use Han-layers to replace fully connected (FC) layers, reducing the number of model parameters while maintaining or even improving the generalization performance. We will also showcase the capabilities of the Han-layer architecture on a few small stylized models, and discuss its current limitations. |
---|---|
ISSN: | 2331-8422 |