Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro
This research paper presents the design of a control technique based on the combination of Linear Algebra (LABC) with Neuro Adaptive Sliding Mode Control (NN-SMC) applied to the control of a marine vessel. Where the linear Algebra technique controls the kinematics of the Vessel and the NN-SMC contro...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2021-05, Vol.19 (5), p.763-771 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 771 |
---|---|
container_issue | 5 |
container_start_page | 763 |
container_title | Revista IEEE América Latina |
container_volume | 19 |
creator | Rossomando, Francisco Serrano, Emanuel Scaglia, Gustavo |
description | This research paper presents the design of a control technique based on the combination of Linear Algebra (LABC) with Neuro Adaptive Sliding Mode Control (NN-SMC) applied to the control of a marine vessel. Where the linear Algebra technique controls the kinematics of the Vessel and the NN-SMC controls its dynamics. Where the adaptive capacity of the neural networks learns the vessel dynamics, including the non modeled dynamics. The simulation results show satisfactory results especially when disturbances are acting on its dynamics. Finally, the convergence of the proposed technique was demonstrated using Lyapunovs theory. |
doi_str_mv | 10.1109/TLA.2021.9448310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2539355613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9448310</ieee_id><sourcerecordid>2539355613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-e7d1e9173e8397a27ffacbc1b7e9377790565e5230e9927dce99393ca813b7bf3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqWwI7FYYk6x47iOx6iCgtTCQGE1jnNBKWlcbAep_x6HFsR0p7vvvdM9hC4pmVBK5M1qUUxSktKJzLKcUXKERpRneUKkTI__9afozPs1ISyf5myE3lZOr8EE63Y4OG0-mu4dG9sFZ1tsa1z0wXZ2Y3uPl9o1HeBX8B5a3PuBfITe2aSo9DY0X4Cf26YaxktbAZ79uJyjk1q3Hi4OdYxe7m5Xs_tk8TR_mBWLxKRZFhIQFQVJBYOcSaFTUdfalIaWAiQTQkjCpxx4ygjEJ0RlYmGSGZ1TVoqyZmN0vffdOvvZgw9qbXvXxZMq5ZHkfEpZpMieMs5676BWW9dstNspStSQo4o5qiFHdcgxSq72kgYA_vDf7Te5xG8F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539355613</pqid></control><display><type>article</type><title>Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro</title><source>IEEE Electronic Library (IEL)</source><creator>Rossomando, Francisco ; Serrano, Emanuel ; Scaglia, Gustavo</creator><creatorcontrib>Rossomando, Francisco ; Serrano, Emanuel ; Scaglia, Gustavo</creatorcontrib><description>This research paper presents the design of a control technique based on the combination of Linear Algebra (LABC) with Neuro Adaptive Sliding Mode Control (NN-SMC) applied to the control of a marine vessel. Where the linear Algebra technique controls the kinematics of the Vessel and the NN-SMC controls its dynamics. Where the adaptive capacity of the neural networks learns the vessel dynamics, including the non modeled dynamics. The simulation results show satisfactory results especially when disturbances are acting on its dynamics. Finally, the convergence of the proposed technique was demonstrated using Lyapunovs theory.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2021.9448310</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Artificial Neural Networks ; Backstepping ; Dynamics ; IEEE transactions ; Kinematics ; Linear algebra ; marine vessel ; Neural networks ; Robots ; Scientific papers ; Sea vessels ; Sliding mode control ; Tracking control ; Trajectory control ; Trajectory tracking</subject><ispartof>Revista IEEE América Latina, 2021-05, Vol.19 (5), p.763-771</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0188-0017 ; 0000-0002-7792-8101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9448310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9448310$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rossomando, Francisco</creatorcontrib><creatorcontrib>Serrano, Emanuel</creatorcontrib><creatorcontrib>Scaglia, Gustavo</creatorcontrib><title>Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This research paper presents the design of a control technique based on the combination of Linear Algebra (LABC) with Neuro Adaptive Sliding Mode Control (NN-SMC) applied to the control of a marine vessel. Where the linear Algebra technique controls the kinematics of the Vessel and the NN-SMC controls its dynamics. Where the adaptive capacity of the neural networks learns the vessel dynamics, including the non modeled dynamics. The simulation results show satisfactory results especially when disturbances are acting on its dynamics. Finally, the convergence of the proposed technique was demonstrated using Lyapunovs theory.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Artificial Neural Networks</subject><subject>Backstepping</subject><subject>Dynamics</subject><subject>IEEE transactions</subject><subject>Kinematics</subject><subject>Linear algebra</subject><subject>marine vessel</subject><subject>Neural networks</subject><subject>Robots</subject><subject>Scientific papers</subject><subject>Sea vessels</subject><subject>Sliding mode control</subject><subject>Tracking control</subject><subject>Trajectory control</subject><subject>Trajectory tracking</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqWwI7FYYk6x47iOx6iCgtTCQGE1jnNBKWlcbAep_x6HFsR0p7vvvdM9hC4pmVBK5M1qUUxSktKJzLKcUXKERpRneUKkTI__9afozPs1ISyf5myE3lZOr8EE63Y4OG0-mu4dG9sFZ1tsa1z0wXZ2Y3uPl9o1HeBX8B5a3PuBfITe2aSo9DY0X4Cf26YaxktbAZ79uJyjk1q3Hi4OdYxe7m5Xs_tk8TR_mBWLxKRZFhIQFQVJBYOcSaFTUdfalIaWAiQTQkjCpxx4ygjEJ0RlYmGSGZ1TVoqyZmN0vffdOvvZgw9qbXvXxZMq5ZHkfEpZpMieMs5676BWW9dstNspStSQo4o5qiFHdcgxSq72kgYA_vDf7Te5xG8F</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Rossomando, Francisco</creator><creator>Serrano, Emanuel</creator><creator>Scaglia, Gustavo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0188-0017</orcidid><orcidid>https://orcid.org/0000-0002-7792-8101</orcidid></search><sort><creationdate>20210501</creationdate><title>Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro</title><author>Rossomando, Francisco ; Serrano, Emanuel ; Scaglia, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-e7d1e9173e8397a27ffacbc1b7e9377790565e5230e9927dce99393ca813b7bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Artificial Neural Networks</topic><topic>Backstepping</topic><topic>Dynamics</topic><topic>IEEE transactions</topic><topic>Kinematics</topic><topic>Linear algebra</topic><topic>marine vessel</topic><topic>Neural networks</topic><topic>Robots</topic><topic>Scientific papers</topic><topic>Sea vessels</topic><topic>Sliding mode control</topic><topic>Tracking control</topic><topic>Trajectory control</topic><topic>Trajectory tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Rossomando, Francisco</creatorcontrib><creatorcontrib>Serrano, Emanuel</creatorcontrib><creatorcontrib>Scaglia, Gustavo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rossomando, Francisco</au><au>Serrano, Emanuel</au><au>Scaglia, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>19</volume><issue>5</issue><spage>763</spage><epage>771</epage><pages>763-771</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This research paper presents the design of a control technique based on the combination of Linear Algebra (LABC) with Neuro Adaptive Sliding Mode Control (NN-SMC) applied to the control of a marine vessel. Where the linear Algebra technique controls the kinematics of the Vessel and the NN-SMC controls its dynamics. Where the adaptive capacity of the neural networks learns the vessel dynamics, including the non modeled dynamics. The simulation results show satisfactory results especially when disturbances are acting on its dynamics. Finally, the convergence of the proposed technique was demonstrated using Lyapunovs theory.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2021.9448310</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0188-0017</orcidid><orcidid>https://orcid.org/0000-0002-7792-8101</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2021-05, Vol.19 (5), p.763-771 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_proquest_journals_2539355613 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive control Artificial Neural Networks Backstepping Dynamics IEEE transactions Kinematics Linear algebra marine vessel Neural networks Robots Scientific papers Sea vessels Sliding mode control Tracking control Trajectory control Trajectory tracking |
title | Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20tracking%20control%20of%20Autonomous%20Marine%20Vessel%20using%20Neuro-Adaptive%20Sliding%20Mode%20Contro&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Rossomando,%20Francisco&rft.date=2021-05-01&rft.volume=19&rft.issue=5&rft.spage=763&rft.epage=771&rft.pages=763-771&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2021.9448310&rft_dat=%3Cproquest_RIE%3E2539355613%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539355613&rft_id=info:pmid/&rft_ieee_id=9448310&rfr_iscdi=true |