Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro

This research paper presents the design of a control technique based on the combination of Linear Algebra (LABC) with Neuro Adaptive Sliding Mode Control (NN-SMC) applied to the control of a marine vessel. Where the linear Algebra technique controls the kinematics of the Vessel and the NN-SMC contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2021-05, Vol.19 (5), p.763-771
Hauptverfasser: Rossomando, Francisco, Serrano, Emanuel, Scaglia, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 771
container_issue 5
container_start_page 763
container_title Revista IEEE América Latina
container_volume 19
creator Rossomando, Francisco
Serrano, Emanuel
Scaglia, Gustavo
description This research paper presents the design of a control technique based on the combination of Linear Algebra (LABC) with Neuro Adaptive Sliding Mode Control (NN-SMC) applied to the control of a marine vessel. Where the linear Algebra technique controls the kinematics of the Vessel and the NN-SMC controls its dynamics. Where the adaptive capacity of the neural networks learns the vessel dynamics, including the non modeled dynamics. The simulation results show satisfactory results especially when disturbances are acting on its dynamics. Finally, the convergence of the proposed technique was demonstrated using Lyapunovs theory.
doi_str_mv 10.1109/TLA.2021.9448310
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2539355613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9448310</ieee_id><sourcerecordid>2539355613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-e7d1e9173e8397a27ffacbc1b7e9377790565e5230e9927dce99393ca813b7bf3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqWwI7FYYk6x47iOx6iCgtTCQGE1jnNBKWlcbAep_x6HFsR0p7vvvdM9hC4pmVBK5M1qUUxSktKJzLKcUXKERpRneUKkTI__9afozPs1ISyf5myE3lZOr8EE63Y4OG0-mu4dG9sFZ1tsa1z0wXZ2Y3uPl9o1HeBX8B5a3PuBfITe2aSo9DY0X4Cf26YaxktbAZ79uJyjk1q3Hi4OdYxe7m5Xs_tk8TR_mBWLxKRZFhIQFQVJBYOcSaFTUdfalIaWAiQTQkjCpxx4ygjEJ0RlYmGSGZ1TVoqyZmN0vffdOvvZgw9qbXvXxZMq5ZHkfEpZpMieMs5676BWW9dstNspStSQo4o5qiFHdcgxSq72kgYA_vDf7Te5xG8F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539355613</pqid></control><display><type>article</type><title>Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro</title><source>IEEE Electronic Library (IEL)</source><creator>Rossomando, Francisco ; Serrano, Emanuel ; Scaglia, Gustavo</creator><creatorcontrib>Rossomando, Francisco ; Serrano, Emanuel ; Scaglia, Gustavo</creatorcontrib><description>This research paper presents the design of a control technique based on the combination of Linear Algebra (LABC) with Neuro Adaptive Sliding Mode Control (NN-SMC) applied to the control of a marine vessel. Where the linear Algebra technique controls the kinematics of the Vessel and the NN-SMC controls its dynamics. Where the adaptive capacity of the neural networks learns the vessel dynamics, including the non modeled dynamics. The simulation results show satisfactory results especially when disturbances are acting on its dynamics. Finally, the convergence of the proposed technique was demonstrated using Lyapunovs theory.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2021.9448310</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Artificial Neural Networks ; Backstepping ; Dynamics ; IEEE transactions ; Kinematics ; Linear algebra ; marine vessel ; Neural networks ; Robots ; Scientific papers ; Sea vessels ; Sliding mode control ; Tracking control ; Trajectory control ; Trajectory tracking</subject><ispartof>Revista IEEE América Latina, 2021-05, Vol.19 (5), p.763-771</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0188-0017 ; 0000-0002-7792-8101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9448310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9448310$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rossomando, Francisco</creatorcontrib><creatorcontrib>Serrano, Emanuel</creatorcontrib><creatorcontrib>Scaglia, Gustavo</creatorcontrib><title>Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This research paper presents the design of a control technique based on the combination of Linear Algebra (LABC) with Neuro Adaptive Sliding Mode Control (NN-SMC) applied to the control of a marine vessel. Where the linear Algebra technique controls the kinematics of the Vessel and the NN-SMC controls its dynamics. Where the adaptive capacity of the neural networks learns the vessel dynamics, including the non modeled dynamics. The simulation results show satisfactory results especially when disturbances are acting on its dynamics. Finally, the convergence of the proposed technique was demonstrated using Lyapunovs theory.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Artificial Neural Networks</subject><subject>Backstepping</subject><subject>Dynamics</subject><subject>IEEE transactions</subject><subject>Kinematics</subject><subject>Linear algebra</subject><subject>marine vessel</subject><subject>Neural networks</subject><subject>Robots</subject><subject>Scientific papers</subject><subject>Sea vessels</subject><subject>Sliding mode control</subject><subject>Tracking control</subject><subject>Trajectory control</subject><subject>Trajectory tracking</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqWwI7FYYk6x47iOx6iCgtTCQGE1jnNBKWlcbAep_x6HFsR0p7vvvdM9hC4pmVBK5M1qUUxSktKJzLKcUXKERpRneUKkTI__9afozPs1ISyf5myE3lZOr8EE63Y4OG0-mu4dG9sFZ1tsa1z0wXZ2Y3uPl9o1HeBX8B5a3PuBfITe2aSo9DY0X4Cf26YaxktbAZ79uJyjk1q3Hi4OdYxe7m5Xs_tk8TR_mBWLxKRZFhIQFQVJBYOcSaFTUdfalIaWAiQTQkjCpxx4ygjEJ0RlYmGSGZ1TVoqyZmN0vffdOvvZgw9qbXvXxZMq5ZHkfEpZpMieMs5676BWW9dstNspStSQo4o5qiFHdcgxSq72kgYA_vDf7Te5xG8F</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Rossomando, Francisco</creator><creator>Serrano, Emanuel</creator><creator>Scaglia, Gustavo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0188-0017</orcidid><orcidid>https://orcid.org/0000-0002-7792-8101</orcidid></search><sort><creationdate>20210501</creationdate><title>Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro</title><author>Rossomando, Francisco ; Serrano, Emanuel ; Scaglia, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-e7d1e9173e8397a27ffacbc1b7e9377790565e5230e9927dce99393ca813b7bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Artificial Neural Networks</topic><topic>Backstepping</topic><topic>Dynamics</topic><topic>IEEE transactions</topic><topic>Kinematics</topic><topic>Linear algebra</topic><topic>marine vessel</topic><topic>Neural networks</topic><topic>Robots</topic><topic>Scientific papers</topic><topic>Sea vessels</topic><topic>Sliding mode control</topic><topic>Tracking control</topic><topic>Trajectory control</topic><topic>Trajectory tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Rossomando, Francisco</creatorcontrib><creatorcontrib>Serrano, Emanuel</creatorcontrib><creatorcontrib>Scaglia, Gustavo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rossomando, Francisco</au><au>Serrano, Emanuel</au><au>Scaglia, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>19</volume><issue>5</issue><spage>763</spage><epage>771</epage><pages>763-771</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This research paper presents the design of a control technique based on the combination of Linear Algebra (LABC) with Neuro Adaptive Sliding Mode Control (NN-SMC) applied to the control of a marine vessel. Where the linear Algebra technique controls the kinematics of the Vessel and the NN-SMC controls its dynamics. Where the adaptive capacity of the neural networks learns the vessel dynamics, including the non modeled dynamics. The simulation results show satisfactory results especially when disturbances are acting on its dynamics. Finally, the convergence of the proposed technique was demonstrated using Lyapunovs theory.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2021.9448310</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0188-0017</orcidid><orcidid>https://orcid.org/0000-0002-7792-8101</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2021-05, Vol.19 (5), p.763-771
issn 1548-0992
1548-0992
language eng
recordid cdi_proquest_journals_2539355613
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive control
Artificial Neural Networks
Backstepping
Dynamics
IEEE transactions
Kinematics
Linear algebra
marine vessel
Neural networks
Robots
Scientific papers
Sea vessels
Sliding mode control
Tracking control
Trajectory control
Trajectory tracking
title Trajectory tracking control of Autonomous Marine Vessel using Neuro-Adaptive Sliding Mode Contro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20tracking%20control%20of%20Autonomous%20Marine%20Vessel%20using%20Neuro-Adaptive%20Sliding%20Mode%20Contro&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Rossomando,%20Francisco&rft.date=2021-05-01&rft.volume=19&rft.issue=5&rft.spage=763&rft.epage=771&rft.pages=763-771&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2021.9448310&rft_dat=%3Cproquest_RIE%3E2539355613%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539355613&rft_id=info:pmid/&rft_ieee_id=9448310&rfr_iscdi=true