Efficient Local Navigation Approach for Autonomous Driving Vehicles
This paper presents an efficient and practical approach for a car navigation system (CVM-Car) based on the velocity space optimization paradigm. The method calculates the velocity control commands to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.79776-79792 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79792 |
---|---|
container_issue | |
container_start_page | 79776 |
container_title | IEEE access |
container_volume | 9 |
creator | Lopez, Joaquin Sanchez-Vilarino, Pablo Sanz, Rafael Paz, Enrique |
description | This paper presents an efficient and practical approach for a car navigation system (CVM-Car) based on the velocity space optimization paradigm. The method calculates the velocity control commands to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has to follow a road path consisting of a sequence of lanelets. This approach is a lower-level reactive control that combines the pure pursuit method to obtain a reference curvature and a reactive control algorithm that keeps the vehicle in the center of the lane' s free space while avoiding obstacles that can partially block it. CVM-Car formulates local obstacle avoidance as a constrained optimization problem in the velocity space of the car. In addition to the vehicle dynamics and obstacles constraints included by the curvature method, car-shape and non-holonomic restrictions are considered in the CVM-Car velocity space. The method has been applied to an autonomous vehicle prototype. |
doi_str_mv | 10.1109/ACCESS.2021.3084807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2539352984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9443169</ieee_id><doaj_id>oai_doaj_org_article_cd877df25d1c4a5fb7a1bb7fbd12e191</doaj_id><sourcerecordid>2539352984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6c38c6918a06941b63b99b2658b7a41d4659d90b2eb86a79e3d8b971747e67303</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEhPsF-xSiXNHvpqPY1UGTJrgMOAaJWm6ZdqakXaT-PdkdJrwxZbl97X9ADBBcIoQlI9lVc2WyymGGE0JFFRAfgVGGDGZk4Kw63_1LRh33QamEKlV8BGoZk3jrXdtny2C1dvsTR_9Svc-tFm538eg7TprQszKQx_asAuHLnuK_ujbVfbl1t5uXXcPbhq97dz4nO_A5_Pso3rNF-8v86pc5JZC0efMEmGZREJDJikyjBgpDWaFMFxTVFNWyFpCg50RTHPpSC2M5IhT7hgnkNyB-eBbB71R--h3Ov6ooL36a4S4Ujr2p5OUrQXndYOLGlmqiyZtQMbwxtQIOyRR8noYvNKL3wfX9WoTDrFN5ytcEEkKLAVNU2SYsjF0XXTNZSuC6gRfDfDVCb46w0-qyaDyzrmLQlJKEnTyCx53ftI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539352984</pqid></control><display><type>article</type><title>Efficient Local Navigation Approach for Autonomous Driving Vehicles</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lopez, Joaquin ; Sanchez-Vilarino, Pablo ; Sanz, Rafael ; Paz, Enrique</creator><creatorcontrib>Lopez, Joaquin ; Sanchez-Vilarino, Pablo ; Sanz, Rafael ; Paz, Enrique</creatorcontrib><description>This paper presents an efficient and practical approach for a car navigation system (CVM-Car) based on the velocity space optimization paradigm. The method calculates the velocity control commands to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has to follow a road path consisting of a sequence of lanelets. This approach is a lower-level reactive control that combines the pure pursuit method to obtain a reference curvature and a reactive control algorithm that keeps the vehicle in the center of the lane' s free space while avoiding obstacles that can partially block it. CVM-Car formulates local obstacle avoidance as a constrained optimization problem in the velocity space of the car. In addition to the vehicle dynamics and obstacles constraints included by the curvature method, car-shape and non-holonomic restrictions are considered in the CVM-Car velocity space. The method has been applied to an autonomous vehicle prototype.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3084807</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Automobiles ; Autonomous navigation ; Autonomous vehicles ; Autonomous vehicles (AVs) ; Collision avoidance ; Constraints ; Control algorithms ; Control theory ; Curvature ; Navigation ; Navigation systems ; Obstacle avoidance ; Optimization ; reactive control ; Roads ; Sensors ; Trajectory ; vehicle motion control ; Velocity</subject><ispartof>IEEE access, 2021, Vol.9, p.79776-79792</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6c38c6918a06941b63b99b2658b7a41d4659d90b2eb86a79e3d8b971747e67303</citedby><cites>FETCH-LOGICAL-c408t-6c38c6918a06941b63b99b2658b7a41d4659d90b2eb86a79e3d8b971747e67303</cites><orcidid>0000-0002-0337-7407 ; 0000-0001-9151-4346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9443169$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lopez, Joaquin</creatorcontrib><creatorcontrib>Sanchez-Vilarino, Pablo</creatorcontrib><creatorcontrib>Sanz, Rafael</creatorcontrib><creatorcontrib>Paz, Enrique</creatorcontrib><title>Efficient Local Navigation Approach for Autonomous Driving Vehicles</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents an efficient and practical approach for a car navigation system (CVM-Car) based on the velocity space optimization paradigm. The method calculates the velocity control commands to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has to follow a road path consisting of a sequence of lanelets. This approach is a lower-level reactive control that combines the pure pursuit method to obtain a reference curvature and a reactive control algorithm that keeps the vehicle in the center of the lane' s free space while avoiding obstacles that can partially block it. CVM-Car formulates local obstacle avoidance as a constrained optimization problem in the velocity space of the car. In addition to the vehicle dynamics and obstacles constraints included by the curvature method, car-shape and non-holonomic restrictions are considered in the CVM-Car velocity space. The method has been applied to an autonomous vehicle prototype.</description><subject>Algorithms</subject><subject>Automobiles</subject><subject>Autonomous navigation</subject><subject>Autonomous vehicles</subject><subject>Autonomous vehicles (AVs)</subject><subject>Collision avoidance</subject><subject>Constraints</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Curvature</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Obstacle avoidance</subject><subject>Optimization</subject><subject>reactive control</subject><subject>Roads</subject><subject>Sensors</subject><subject>Trajectory</subject><subject>vehicle motion control</subject><subject>Velocity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1PwzAMhiMEEhPsF-xSiXNHvpqPY1UGTJrgMOAaJWm6ZdqakXaT-PdkdJrwxZbl97X9ADBBcIoQlI9lVc2WyymGGE0JFFRAfgVGGDGZk4Kw63_1LRh33QamEKlV8BGoZk3jrXdtny2C1dvsTR_9Svc-tFm538eg7TprQszKQx_asAuHLnuK_ujbVfbl1t5uXXcPbhq97dz4nO_A5_Pso3rNF-8v86pc5JZC0efMEmGZREJDJikyjBgpDWaFMFxTVFNWyFpCg50RTHPpSC2M5IhT7hgnkNyB-eBbB71R--h3Ov6ooL36a4S4Ujr2p5OUrQXndYOLGlmqiyZtQMbwxtQIOyRR8noYvNKL3wfX9WoTDrFN5ytcEEkKLAVNU2SYsjF0XXTNZSuC6gRfDfDVCb46w0-qyaDyzrmLQlJKEnTyCx53ftI</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lopez, Joaquin</creator><creator>Sanchez-Vilarino, Pablo</creator><creator>Sanz, Rafael</creator><creator>Paz, Enrique</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0337-7407</orcidid><orcidid>https://orcid.org/0000-0001-9151-4346</orcidid></search><sort><creationdate>2021</creationdate><title>Efficient Local Navigation Approach for Autonomous Driving Vehicles</title><author>Lopez, Joaquin ; Sanchez-Vilarino, Pablo ; Sanz, Rafael ; Paz, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6c38c6918a06941b63b99b2658b7a41d4659d90b2eb86a79e3d8b971747e67303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automobiles</topic><topic>Autonomous navigation</topic><topic>Autonomous vehicles</topic><topic>Autonomous vehicles (AVs)</topic><topic>Collision avoidance</topic><topic>Constraints</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Curvature</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Obstacle avoidance</topic><topic>Optimization</topic><topic>reactive control</topic><topic>Roads</topic><topic>Sensors</topic><topic>Trajectory</topic><topic>vehicle motion control</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Joaquin</creatorcontrib><creatorcontrib>Sanchez-Vilarino, Pablo</creatorcontrib><creatorcontrib>Sanz, Rafael</creatorcontrib><creatorcontrib>Paz, Enrique</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, Joaquin</au><au>Sanchez-Vilarino, Pablo</au><au>Sanz, Rafael</au><au>Paz, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Local Navigation Approach for Autonomous Driving Vehicles</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>79776</spage><epage>79792</epage><pages>79776-79792</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents an efficient and practical approach for a car navigation system (CVM-Car) based on the velocity space optimization paradigm. The method calculates the velocity control commands to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has to follow a road path consisting of a sequence of lanelets. This approach is a lower-level reactive control that combines the pure pursuit method to obtain a reference curvature and a reactive control algorithm that keeps the vehicle in the center of the lane' s free space while avoiding obstacles that can partially block it. CVM-Car formulates local obstacle avoidance as a constrained optimization problem in the velocity space of the car. In addition to the vehicle dynamics and obstacles constraints included by the curvature method, car-shape and non-holonomic restrictions are considered in the CVM-Car velocity space. The method has been applied to an autonomous vehicle prototype.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3084807</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0337-7407</orcidid><orcidid>https://orcid.org/0000-0001-9151-4346</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.79776-79792 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2539352984 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Automobiles Autonomous navigation Autonomous vehicles Autonomous vehicles (AVs) Collision avoidance Constraints Control algorithms Control theory Curvature Navigation Navigation systems Obstacle avoidance Optimization reactive control Roads Sensors Trajectory vehicle motion control Velocity |
title | Efficient Local Navigation Approach for Autonomous Driving Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Local%20Navigation%20Approach%20for%20Autonomous%20Driving%20Vehicles&rft.jtitle=IEEE%20access&rft.au=Lopez,%20Joaquin&rft.date=2021&rft.volume=9&rft.spage=79776&rft.epage=79792&rft.pages=79776-79792&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3084807&rft_dat=%3Cproquest_doaj_%3E2539352984%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539352984&rft_id=info:pmid/&rft_ieee_id=9443169&rft_doaj_id=oai_doaj_org_article_cd877df25d1c4a5fb7a1bb7fbd12e191&rfr_iscdi=true |