Efficient Local Navigation Approach for Autonomous Driving Vehicles

This paper presents an efficient and practical approach for a car navigation system (CVM-Car) based on the velocity space optimization paradigm. The method calculates the velocity control commands to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.79776-79792
Hauptverfasser: Lopez, Joaquin, Sanchez-Vilarino, Pablo, Sanz, Rafael, Paz, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79792
container_issue
container_start_page 79776
container_title IEEE access
container_volume 9
creator Lopez, Joaquin
Sanchez-Vilarino, Pablo
Sanz, Rafael
Paz, Enrique
description This paper presents an efficient and practical approach for a car navigation system (CVM-Car) based on the velocity space optimization paradigm. The method calculates the velocity control commands to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has to follow a road path consisting of a sequence of lanelets. This approach is a lower-level reactive control that combines the pure pursuit method to obtain a reference curvature and a reactive control algorithm that keeps the vehicle in the center of the lane' s free space while avoiding obstacles that can partially block it. CVM-Car formulates local obstacle avoidance as a constrained optimization problem in the velocity space of the car. In addition to the vehicle dynamics and obstacles constraints included by the curvature method, car-shape and non-holonomic restrictions are considered in the CVM-Car velocity space. The method has been applied to an autonomous vehicle prototype.
doi_str_mv 10.1109/ACCESS.2021.3084807
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2539352984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9443169</ieee_id><doaj_id>oai_doaj_org_article_cd877df25d1c4a5fb7a1bb7fbd12e191</doaj_id><sourcerecordid>2539352984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6c38c6918a06941b63b99b2658b7a41d4659d90b2eb86a79e3d8b971747e67303</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEhPsF-xSiXNHvpqPY1UGTJrgMOAaJWm6ZdqakXaT-PdkdJrwxZbl97X9ADBBcIoQlI9lVc2WyymGGE0JFFRAfgVGGDGZk4Kw63_1LRh33QamEKlV8BGoZk3jrXdtny2C1dvsTR_9Svc-tFm538eg7TprQszKQx_asAuHLnuK_ujbVfbl1t5uXXcPbhq97dz4nO_A5_Pso3rNF-8v86pc5JZC0efMEmGZREJDJikyjBgpDWaFMFxTVFNWyFpCg50RTHPpSC2M5IhT7hgnkNyB-eBbB71R--h3Ov6ooL36a4S4Ujr2p5OUrQXndYOLGlmqiyZtQMbwxtQIOyRR8noYvNKL3wfX9WoTDrFN5ytcEEkKLAVNU2SYsjF0XXTNZSuC6gRfDfDVCb46w0-qyaDyzrmLQlJKEnTyCx53ftI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539352984</pqid></control><display><type>article</type><title>Efficient Local Navigation Approach for Autonomous Driving Vehicles</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lopez, Joaquin ; Sanchez-Vilarino, Pablo ; Sanz, Rafael ; Paz, Enrique</creator><creatorcontrib>Lopez, Joaquin ; Sanchez-Vilarino, Pablo ; Sanz, Rafael ; Paz, Enrique</creatorcontrib><description>This paper presents an efficient and practical approach for a car navigation system (CVM-Car) based on the velocity space optimization paradigm. The method calculates the velocity control commands to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has to follow a road path consisting of a sequence of lanelets. This approach is a lower-level reactive control that combines the pure pursuit method to obtain a reference curvature and a reactive control algorithm that keeps the vehicle in the center of the lane' s free space while avoiding obstacles that can partially block it. CVM-Car formulates local obstacle avoidance as a constrained optimization problem in the velocity space of the car. In addition to the vehicle dynamics and obstacles constraints included by the curvature method, car-shape and non-holonomic restrictions are considered in the CVM-Car velocity space. The method has been applied to an autonomous vehicle prototype.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3084807</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Automobiles ; Autonomous navigation ; Autonomous vehicles ; Autonomous vehicles (AVs) ; Collision avoidance ; Constraints ; Control algorithms ; Control theory ; Curvature ; Navigation ; Navigation systems ; Obstacle avoidance ; Optimization ; reactive control ; Roads ; Sensors ; Trajectory ; vehicle motion control ; Velocity</subject><ispartof>IEEE access, 2021, Vol.9, p.79776-79792</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6c38c6918a06941b63b99b2658b7a41d4659d90b2eb86a79e3d8b971747e67303</citedby><cites>FETCH-LOGICAL-c408t-6c38c6918a06941b63b99b2658b7a41d4659d90b2eb86a79e3d8b971747e67303</cites><orcidid>0000-0002-0337-7407 ; 0000-0001-9151-4346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9443169$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lopez, Joaquin</creatorcontrib><creatorcontrib>Sanchez-Vilarino, Pablo</creatorcontrib><creatorcontrib>Sanz, Rafael</creatorcontrib><creatorcontrib>Paz, Enrique</creatorcontrib><title>Efficient Local Navigation Approach for Autonomous Driving Vehicles</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents an efficient and practical approach for a car navigation system (CVM-Car) based on the velocity space optimization paradigm. The method calculates the velocity control commands to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has to follow a road path consisting of a sequence of lanelets. This approach is a lower-level reactive control that combines the pure pursuit method to obtain a reference curvature and a reactive control algorithm that keeps the vehicle in the center of the lane' s free space while avoiding obstacles that can partially block it. CVM-Car formulates local obstacle avoidance as a constrained optimization problem in the velocity space of the car. In addition to the vehicle dynamics and obstacles constraints included by the curvature method, car-shape and non-holonomic restrictions are considered in the CVM-Car velocity space. The method has been applied to an autonomous vehicle prototype.</description><subject>Algorithms</subject><subject>Automobiles</subject><subject>Autonomous navigation</subject><subject>Autonomous vehicles</subject><subject>Autonomous vehicles (AVs)</subject><subject>Collision avoidance</subject><subject>Constraints</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Curvature</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Obstacle avoidance</subject><subject>Optimization</subject><subject>reactive control</subject><subject>Roads</subject><subject>Sensors</subject><subject>Trajectory</subject><subject>vehicle motion control</subject><subject>Velocity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1PwzAMhiMEEhPsF-xSiXNHvpqPY1UGTJrgMOAaJWm6ZdqakXaT-PdkdJrwxZbl97X9ADBBcIoQlI9lVc2WyymGGE0JFFRAfgVGGDGZk4Kw63_1LRh33QamEKlV8BGoZk3jrXdtny2C1dvsTR_9Svc-tFm538eg7TprQszKQx_asAuHLnuK_ujbVfbl1t5uXXcPbhq97dz4nO_A5_Pso3rNF-8v86pc5JZC0efMEmGZREJDJikyjBgpDWaFMFxTVFNWyFpCg50RTHPpSC2M5IhT7hgnkNyB-eBbB71R--h3Ov6ooL36a4S4Ujr2p5OUrQXndYOLGlmqiyZtQMbwxtQIOyRR8noYvNKL3wfX9WoTDrFN5ytcEEkKLAVNU2SYsjF0XXTNZSuC6gRfDfDVCb46w0-qyaDyzrmLQlJKEnTyCx53ftI</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lopez, Joaquin</creator><creator>Sanchez-Vilarino, Pablo</creator><creator>Sanz, Rafael</creator><creator>Paz, Enrique</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0337-7407</orcidid><orcidid>https://orcid.org/0000-0001-9151-4346</orcidid></search><sort><creationdate>2021</creationdate><title>Efficient Local Navigation Approach for Autonomous Driving Vehicles</title><author>Lopez, Joaquin ; Sanchez-Vilarino, Pablo ; Sanz, Rafael ; Paz, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6c38c6918a06941b63b99b2658b7a41d4659d90b2eb86a79e3d8b971747e67303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automobiles</topic><topic>Autonomous navigation</topic><topic>Autonomous vehicles</topic><topic>Autonomous vehicles (AVs)</topic><topic>Collision avoidance</topic><topic>Constraints</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Curvature</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Obstacle avoidance</topic><topic>Optimization</topic><topic>reactive control</topic><topic>Roads</topic><topic>Sensors</topic><topic>Trajectory</topic><topic>vehicle motion control</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Joaquin</creatorcontrib><creatorcontrib>Sanchez-Vilarino, Pablo</creatorcontrib><creatorcontrib>Sanz, Rafael</creatorcontrib><creatorcontrib>Paz, Enrique</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, Joaquin</au><au>Sanchez-Vilarino, Pablo</au><au>Sanz, Rafael</au><au>Paz, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Local Navigation Approach for Autonomous Driving Vehicles</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>79776</spage><epage>79792</epage><pages>79776-79792</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents an efficient and practical approach for a car navigation system (CVM-Car) based on the velocity space optimization paradigm. The method calculates the velocity control commands to keep the car in the lane while avoiding the obstacles detected by the proximity sensors. The car has to follow a road path consisting of a sequence of lanelets. This approach is a lower-level reactive control that combines the pure pursuit method to obtain a reference curvature and a reactive control algorithm that keeps the vehicle in the center of the lane' s free space while avoiding obstacles that can partially block it. CVM-Car formulates local obstacle avoidance as a constrained optimization problem in the velocity space of the car. In addition to the vehicle dynamics and obstacles constraints included by the curvature method, car-shape and non-holonomic restrictions are considered in the CVM-Car velocity space. The method has been applied to an autonomous vehicle prototype.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3084807</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0337-7407</orcidid><orcidid>https://orcid.org/0000-0001-9151-4346</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.79776-79792
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2539352984
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Automobiles
Autonomous navigation
Autonomous vehicles
Autonomous vehicles (AVs)
Collision avoidance
Constraints
Control algorithms
Control theory
Curvature
Navigation
Navigation systems
Obstacle avoidance
Optimization
reactive control
Roads
Sensors
Trajectory
vehicle motion control
Velocity
title Efficient Local Navigation Approach for Autonomous Driving Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Local%20Navigation%20Approach%20for%20Autonomous%20Driving%20Vehicles&rft.jtitle=IEEE%20access&rft.au=Lopez,%20Joaquin&rft.date=2021&rft.volume=9&rft.spage=79776&rft.epage=79792&rft.pages=79776-79792&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3084807&rft_dat=%3Cproquest_doaj_%3E2539352984%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539352984&rft_id=info:pmid/&rft_ieee_id=9443169&rft_doaj_id=oai_doaj_org_article_cd877df25d1c4a5fb7a1bb7fbd12e191&rfr_iscdi=true