Effect of acidity on ferric oxide nanoparticles supported on γ–χ–Al2O3 in the methanol dehydration reaction toward dimethyl ether
[Display omitted] •Methanol dehydration using Fe2O3/γ–χ–Al2O3 nanocatalysts.•Fe2O3/γ–χ–Al2O3 reached selectivity to DME of 100%.•The Ea of the Fe2O3/γ–χ–Al2O3 was lower than the value of γ–χ–Al2O3. In this work, the low cost synthesis of the Fe2O3/γ–χ–Al2O3 catalyst, carried out by the wet impregnat...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2021-07, Vol.296, p.120618, Article 120618 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120618 |
container_title | Fuel (Guildford) |
container_volume | 296 |
creator | Armenta, M.A. Maytorena, V.M. Silva–Rodrigo, R. Flores-Sánchez, L.A. Quintana, J.M. Olivas, A. |
description | [Display omitted]
•Methanol dehydration using Fe2O3/γ–χ–Al2O3 nanocatalysts.•Fe2O3/γ–χ–Al2O3 reached selectivity to DME of 100%.•The Ea of the Fe2O3/γ–χ–Al2O3 was lower than the value of γ–χ–Al2O3.
In this work, the low cost synthesis of the Fe2O3/γ–χ–Al2O3 catalyst, carried out by the wet impregnation method, promoted a conversion in methanol dehydration by 46% (an increase of 5% with respect to γ–χ–Al2O3 support), and with a selectivity of 100% towards DME (at 250 °C and 1 atm pressure), due to a higher abundance in the density of moderate acidic sites generated by the synergistic metal-support interaction. The slight decrease in catalytic activity for the Fe2O3/γ–χ–Al2O3 system, compared to the γ–χ–Al2O3 from 260 °C, was linked to the effect of changes in the shape and size of the Fe2O3 nanoparticles. These particles went from semi-spherical to nano-needles at 290 °C reaction temperature. Finally, the great structural stability of Fe3+ measured by XPS, RAMAN spectroscopy and UV–Vis, and the low activation energy of the Fe2O3/γ–χ–Al2O3 material (102.66 kJ/mol), place the Fe2O3/γ–χ–Al2O3 catalyst as an excellent candidate for methanol dehydration, under conditions of 240 to 250 °C and methanol partial pressures between 9.8 and 7.8 kPa, respectively. |
doi_str_mv | 10.1016/j.fuel.2021.120618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539311109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121004944</els_id><sourcerecordid>2539311109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-35c518cfd86756df09eed41871faf89f9cf7c4f8894d6bbf26a7a34e98a6bae53</originalsourceid><addsrcrecordid>eNp9kDtOAzEQhi0EEuFxASpL1Bv82IdXokGIl4REA7Xl2GPF0bJebAdIR5cDcBTuAXfgJHgJNc2Mi-8fz3wIHVEypYTWJ4upXUI3ZYTRKWWkpmILTahoeNHQim-jCclUwXhNd9FejAtCSCOqcoLWF9aCTthbrLQzLq2w77GFEJzG_tUZwL3q_aBCcrqDiONyGHxIYEbu8-P77f1rnctZx-44dj1Oc8CPkOY51GED85UJKrnMBlD695H8iwoGGzdiqw7nCuEA7VjVRTj86_vo4fLi_vy6uL27ujk_uy00ZyIVvNIVFdoaUTdVbSxpAUyZD6VWWdHaVttGl1aItjT1bGZZrRrFS2iFqmcKKr6Pjjdzh-CflhCTXPhl6POXklW85ZRS0maKbSgdfIwBrByCe1RhJSmRo3C5kKNwOQqXG-E5dLoJQd7_2UGQUTvoNRgXsmJpvPsv_gNu6Y9T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539311109</pqid></control><display><type>article</type><title>Effect of acidity on ferric oxide nanoparticles supported on γ–χ–Al2O3 in the methanol dehydration reaction toward dimethyl ether</title><source>Elsevier ScienceDirect Journals</source><creator>Armenta, M.A. ; Maytorena, V.M. ; Silva–Rodrigo, R. ; Flores-Sánchez, L.A. ; Quintana, J.M. ; Olivas, A.</creator><creatorcontrib>Armenta, M.A. ; Maytorena, V.M. ; Silva–Rodrigo, R. ; Flores-Sánchez, L.A. ; Quintana, J.M. ; Olivas, A.</creatorcontrib><description>[Display omitted]
•Methanol dehydration using Fe2O3/γ–χ–Al2O3 nanocatalysts.•Fe2O3/γ–χ–Al2O3 reached selectivity to DME of 100%.•The Ea of the Fe2O3/γ–χ–Al2O3 was lower than the value of γ–χ–Al2O3.
In this work, the low cost synthesis of the Fe2O3/γ–χ–Al2O3 catalyst, carried out by the wet impregnation method, promoted a conversion in methanol dehydration by 46% (an increase of 5% with respect to γ–χ–Al2O3 support), and with a selectivity of 100% towards DME (at 250 °C and 1 atm pressure), due to a higher abundance in the density of moderate acidic sites generated by the synergistic metal-support interaction. The slight decrease in catalytic activity for the Fe2O3/γ–χ–Al2O3 system, compared to the γ–χ–Al2O3 from 260 °C, was linked to the effect of changes in the shape and size of the Fe2O3 nanoparticles. These particles went from semi-spherical to nano-needles at 290 °C reaction temperature. Finally, the great structural stability of Fe3+ measured by XPS, RAMAN spectroscopy and UV–Vis, and the low activation energy of the Fe2O3/γ–χ–Al2O3 material (102.66 kJ/mol), place the Fe2O3/γ–χ–Al2O3 catalyst as an excellent candidate for methanol dehydration, under conditions of 240 to 250 °C and methanol partial pressures between 9.8 and 7.8 kPa, respectively.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.120618</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acid sites ; Acidity ; Aluminum oxide ; Catalysts ; Catalytic activity ; Dehydration ; Dimethyl ether ; Ferric oxide ; Ferric oxide nanoparticle ; Iron ; Methanol ; Methanol dehydration ; Nanoparticles ; Raman spectroscopy ; Selectivity ; Structural stability ; X ray photoelectron spectroscopy</subject><ispartof>Fuel (Guildford), 2021-07, Vol.296, p.120618, Article 120618</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-35c518cfd86756df09eed41871faf89f9cf7c4f8894d6bbf26a7a34e98a6bae53</citedby><cites>FETCH-LOGICAL-c328t-35c518cfd86756df09eed41871faf89f9cf7c4f8894d6bbf26a7a34e98a6bae53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2021.120618$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Armenta, M.A.</creatorcontrib><creatorcontrib>Maytorena, V.M.</creatorcontrib><creatorcontrib>Silva–Rodrigo, R.</creatorcontrib><creatorcontrib>Flores-Sánchez, L.A.</creatorcontrib><creatorcontrib>Quintana, J.M.</creatorcontrib><creatorcontrib>Olivas, A.</creatorcontrib><title>Effect of acidity on ferric oxide nanoparticles supported on γ–χ–Al2O3 in the methanol dehydration reaction toward dimethyl ether</title><title>Fuel (Guildford)</title><description>[Display omitted]
•Methanol dehydration using Fe2O3/γ–χ–Al2O3 nanocatalysts.•Fe2O3/γ–χ–Al2O3 reached selectivity to DME of 100%.•The Ea of the Fe2O3/γ–χ–Al2O3 was lower than the value of γ–χ–Al2O3.
In this work, the low cost synthesis of the Fe2O3/γ–χ–Al2O3 catalyst, carried out by the wet impregnation method, promoted a conversion in methanol dehydration by 46% (an increase of 5% with respect to γ–χ–Al2O3 support), and with a selectivity of 100% towards DME (at 250 °C and 1 atm pressure), due to a higher abundance in the density of moderate acidic sites generated by the synergistic metal-support interaction. The slight decrease in catalytic activity for the Fe2O3/γ–χ–Al2O3 system, compared to the γ–χ–Al2O3 from 260 °C, was linked to the effect of changes in the shape and size of the Fe2O3 nanoparticles. These particles went from semi-spherical to nano-needles at 290 °C reaction temperature. Finally, the great structural stability of Fe3+ measured by XPS, RAMAN spectroscopy and UV–Vis, and the low activation energy of the Fe2O3/γ–χ–Al2O3 material (102.66 kJ/mol), place the Fe2O3/γ–χ–Al2O3 catalyst as an excellent candidate for methanol dehydration, under conditions of 240 to 250 °C and methanol partial pressures between 9.8 and 7.8 kPa, respectively.</description><subject>Acid sites</subject><subject>Acidity</subject><subject>Aluminum oxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Dehydration</subject><subject>Dimethyl ether</subject><subject>Ferric oxide</subject><subject>Ferric oxide nanoparticle</subject><subject>Iron</subject><subject>Methanol</subject><subject>Methanol dehydration</subject><subject>Nanoparticles</subject><subject>Raman spectroscopy</subject><subject>Selectivity</subject><subject>Structural stability</subject><subject>X ray photoelectron spectroscopy</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtOAzEQhi0EEuFxASpL1Bv82IdXokGIl4REA7Xl2GPF0bJebAdIR5cDcBTuAXfgJHgJNc2Mi-8fz3wIHVEypYTWJ4upXUI3ZYTRKWWkpmILTahoeNHQim-jCclUwXhNd9FejAtCSCOqcoLWF9aCTthbrLQzLq2w77GFEJzG_tUZwL3q_aBCcrqDiONyGHxIYEbu8-P77f1rnctZx-44dj1Oc8CPkOY51GED85UJKrnMBlD695H8iwoGGzdiqw7nCuEA7VjVRTj86_vo4fLi_vy6uL27ujk_uy00ZyIVvNIVFdoaUTdVbSxpAUyZD6VWWdHaVttGl1aItjT1bGZZrRrFS2iFqmcKKr6Pjjdzh-CflhCTXPhl6POXklW85ZRS0maKbSgdfIwBrByCe1RhJSmRo3C5kKNwOQqXG-E5dLoJQd7_2UGQUTvoNRgXsmJpvPsv_gNu6Y9T</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Armenta, M.A.</creator><creator>Maytorena, V.M.</creator><creator>Silva–Rodrigo, R.</creator><creator>Flores-Sánchez, L.A.</creator><creator>Quintana, J.M.</creator><creator>Olivas, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20210715</creationdate><title>Effect of acidity on ferric oxide nanoparticles supported on γ–χ–Al2O3 in the methanol dehydration reaction toward dimethyl ether</title><author>Armenta, M.A. ; Maytorena, V.M. ; Silva–Rodrigo, R. ; Flores-Sánchez, L.A. ; Quintana, J.M. ; Olivas, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-35c518cfd86756df09eed41871faf89f9cf7c4f8894d6bbf26a7a34e98a6bae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acid sites</topic><topic>Acidity</topic><topic>Aluminum oxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Dehydration</topic><topic>Dimethyl ether</topic><topic>Ferric oxide</topic><topic>Ferric oxide nanoparticle</topic><topic>Iron</topic><topic>Methanol</topic><topic>Methanol dehydration</topic><topic>Nanoparticles</topic><topic>Raman spectroscopy</topic><topic>Selectivity</topic><topic>Structural stability</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armenta, M.A.</creatorcontrib><creatorcontrib>Maytorena, V.M.</creatorcontrib><creatorcontrib>Silva–Rodrigo, R.</creatorcontrib><creatorcontrib>Flores-Sánchez, L.A.</creatorcontrib><creatorcontrib>Quintana, J.M.</creatorcontrib><creatorcontrib>Olivas, A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armenta, M.A.</au><au>Maytorena, V.M.</au><au>Silva–Rodrigo, R.</au><au>Flores-Sánchez, L.A.</au><au>Quintana, J.M.</au><au>Olivas, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of acidity on ferric oxide nanoparticles supported on γ–χ–Al2O3 in the methanol dehydration reaction toward dimethyl ether</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>296</volume><spage>120618</spage><pages>120618-</pages><artnum>120618</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•Methanol dehydration using Fe2O3/γ–χ–Al2O3 nanocatalysts.•Fe2O3/γ–χ–Al2O3 reached selectivity to DME of 100%.•The Ea of the Fe2O3/γ–χ–Al2O3 was lower than the value of γ–χ–Al2O3.
In this work, the low cost synthesis of the Fe2O3/γ–χ–Al2O3 catalyst, carried out by the wet impregnation method, promoted a conversion in methanol dehydration by 46% (an increase of 5% with respect to γ–χ–Al2O3 support), and with a selectivity of 100% towards DME (at 250 °C and 1 atm pressure), due to a higher abundance in the density of moderate acidic sites generated by the synergistic metal-support interaction. The slight decrease in catalytic activity for the Fe2O3/γ–χ–Al2O3 system, compared to the γ–χ–Al2O3 from 260 °C, was linked to the effect of changes in the shape and size of the Fe2O3 nanoparticles. These particles went from semi-spherical to nano-needles at 290 °C reaction temperature. Finally, the great structural stability of Fe3+ measured by XPS, RAMAN spectroscopy and UV–Vis, and the low activation energy of the Fe2O3/γ–χ–Al2O3 material (102.66 kJ/mol), place the Fe2O3/γ–χ–Al2O3 catalyst as an excellent candidate for methanol dehydration, under conditions of 240 to 250 °C and methanol partial pressures between 9.8 and 7.8 kPa, respectively.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.120618</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2021-07, Vol.296, p.120618, Article 120618 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2539311109 |
source | Elsevier ScienceDirect Journals |
subjects | Acid sites Acidity Aluminum oxide Catalysts Catalytic activity Dehydration Dimethyl ether Ferric oxide Ferric oxide nanoparticle Iron Methanol Methanol dehydration Nanoparticles Raman spectroscopy Selectivity Structural stability X ray photoelectron spectroscopy |
title | Effect of acidity on ferric oxide nanoparticles supported on γ–χ–Al2O3 in the methanol dehydration reaction toward dimethyl ether |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20acidity%20on%20ferric%20oxide%20nanoparticles%20supported%20on%20%CE%B3%E2%80%93%CF%87%E2%80%93Al2O3%20in%20the%20methanol%20dehydration%20reaction%20toward%20dimethyl%20ether&rft.jtitle=Fuel%20(Guildford)&rft.au=Armenta,%20M.A.&rft.date=2021-07-15&rft.volume=296&rft.spage=120618&rft.pages=120618-&rft.artnum=120618&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.120618&rft_dat=%3Cproquest_cross%3E2539311109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539311109&rft_id=info:pmid/&rft_els_id=S0016236121004944&rfr_iscdi=true |