Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels

The effect of high-power pulsed fluxes of deuterium ions and deuterium plasma generated in the Plasma Focus PF-1000U device on oxide dispersion strengthened ferritic steel KP4-ODS (Fe–15 Cr–4 Al–2 W–0.35 Y 2 O 3 ) was experimentally studied. When the samples were irradiated with two pulses ( N = 2),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic materials : applied research 2021-05, Vol.12 (3), p.601-609
Hauptverfasser: Gribkov, V. A., Demina, E. V., Demin, A. S., Maslyaev, S. A., Pimenov, V. N., Prusakova, M. D., Sirotinkin, V. P., Rogozhkin, S. V., Lyamkin, P. V., Padukh, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 609
container_issue 3
container_start_page 601
container_title Inorganic materials : applied research
container_volume 12
creator Gribkov, V. A.
Demina, E. V.
Demin, A. S.
Maslyaev, S. A.
Pimenov, V. N.
Prusakova, M. D.
Sirotinkin, V. P.
Rogozhkin, S. V.
Lyamkin, P. V.
Padukh, M.
description The effect of high-power pulsed fluxes of deuterium ions and deuterium plasma generated in the Plasma Focus PF-1000U device on oxide dispersion strengthened ferritic steel KP4-ODS (Fe–15 Cr–4 Al–2 W–0.35 Y 2 O 3 ) was experimentally studied. When the samples were irradiated with two pulses ( N = 2), the plasma flux power density was q pl ≈ 10 8 W/cm 2 and that of ion beam q i × 10 9 W/cm 2 . At N = 9, q pl ≈ 2 ×10 8 W/cm 2 and q i ≈ 5 × 10 9 W/cm 2 . The pulse duration of the plasma beams was τ pl ≈ 100 ns and that of the ion beams τ i ≈ 50 ns. It was shown that irradiation of the material in the soft mode ( N = 2) leads to surface erosion due to evaporation of the material and is accompanied by the surface polishing effect. In this case, there is no significant change in the initial structural phase state of steel; only a small change in the crystal lattice parameters of solid solutions based on iron and chromium is observed. In the hard irradiation mode ( N = 9), owing to the high heating of the surface layer, in addition to erosion, the material melts. In the structure of the surface layer of the ODS steel, a chromium-based solid solution disappears and only an iron-based solid solution remains, while the number of second-phase nanoparticles increases. The presence of a liquid phase formed upon exposure to fluxes of deuterium ions and deuterium plasma stimulates the possibility of complete dissolution of small (less than ~20 nm) nanoparticles of Y 2 O 3 oxide and partial dissolution of larger (tens of nanometers) nanoparticles. Enhanced in comparison with the solid phase, the diffusion redistribution of elements in the molten surface layer contributes to the formation of Y 2 O 3 nanoparticles and oxides of other elements that make up the ODS steel (Al 2 O 3 , Y–Al–O) upon cooling of the melt.
doi_str_mv 10.1134/S2075113321030126
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539269187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539269187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-4238e66ea186e207c78023f98c08d147d33bdb3d83ad09ed47e127b9132b4d443</originalsourceid><addsrcrecordid>eNp1kFtLw0AQhRdRsNT-AN8WfI7u7Gxuj9KLFgoVquBbSLKTuiVN6m4C9d-7oaKCOC8zfJxzZhjGrkHcAqC620gRh35CCQIFyOiMjQYUAISv598z4iWbOLcTvkIIUxWOWDuvKio73lb8qa8dab6o-yO5Acyo78iafs-XbeN43uhf6KnO3T7nbcPXR6OJz4w7kHXGg01nqdl2b9QMcWSt6UzpKVHtrthFlfs9k68-Zi-L-fP0MVitH5bT-1VQogi7QElMKIoohyQif34ZJ0JilSalSDSoWCMWukCdYK5FSlrFBDIuUkBZKK0UjtnNKfdg2_eeXJft2t42fmUmQ0xllEISexWcVKVtnbNUZQdr9rn9yEBkw2uzP6_1HnnyOK9ttmR_kv83fQJkWHny</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539269187</pqid></control><display><type>article</type><title>Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gribkov, V. A. ; Demina, E. V. ; Demin, A. S. ; Maslyaev, S. A. ; Pimenov, V. N. ; Prusakova, M. D. ; Sirotinkin, V. P. ; Rogozhkin, S. V. ; Lyamkin, P. V. ; Padukh, M.</creator><creatorcontrib>Gribkov, V. A. ; Demina, E. V. ; Demin, A. S. ; Maslyaev, S. A. ; Pimenov, V. N. ; Prusakova, M. D. ; Sirotinkin, V. P. ; Rogozhkin, S. V. ; Lyamkin, P. V. ; Padukh, M.</creatorcontrib><description>The effect of high-power pulsed fluxes of deuterium ions and deuterium plasma generated in the Plasma Focus PF-1000U device on oxide dispersion strengthened ferritic steel KP4-ODS (Fe–15 Cr–4 Al–2 W–0.35 Y 2 O 3 ) was experimentally studied. When the samples were irradiated with two pulses ( N = 2), the plasma flux power density was q pl ≈ 10 8 W/cm 2 and that of ion beam q i × 10 9 W/cm 2 . At N = 9, q pl ≈ 2 ×10 8 W/cm 2 and q i ≈ 5 × 10 9 W/cm 2 . The pulse duration of the plasma beams was τ pl ≈ 100 ns and that of the ion beams τ i ≈ 50 ns. It was shown that irradiation of the material in the soft mode ( N = 2) leads to surface erosion due to evaporation of the material and is accompanied by the surface polishing effect. In this case, there is no significant change in the initial structural phase state of steel; only a small change in the crystal lattice parameters of solid solutions based on iron and chromium is observed. In the hard irradiation mode ( N = 9), owing to the high heating of the surface layer, in addition to erosion, the material melts. In the structure of the surface layer of the ODS steel, a chromium-based solid solution disappears and only an iron-based solid solution remains, while the number of second-phase nanoparticles increases. The presence of a liquid phase formed upon exposure to fluxes of deuterium ions and deuterium plasma stimulates the possibility of complete dissolution of small (less than ~20 nm) nanoparticles of Y 2 O 3 oxide and partial dissolution of larger (tens of nanometers) nanoparticles. Enhanced in comparison with the solid phase, the diffusion redistribution of elements in the molten surface layer contributes to the formation of Y 2 O 3 nanoparticles and oxides of other elements that make up the ODS steel (Al 2 O 3 , Y–Al–O) upon cooling of the melt.</description><identifier>ISSN: 2075-1133</identifier><identifier>EISSN: 2075-115X</identifier><identifier>DOI: 10.1134/S2075113321030126</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum oxide ; Chemistry ; Chemistry and Materials Science ; Chromium ; Crystal lattices ; Deuterium ; Deuterium plasma ; Diffusion layers ; Dispersion hardening steels ; Dissolution ; Effects of Energy Fluxes on Materials ; Ferritic stainless steels ; Fluxes ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Ion beams ; Irradiation ; Lattice parameters ; Liquid phases ; Materials Science ; Nanoparticles ; Oxide dispersion strengthening ; Plasma ; Plasma focus ; Pulse duration ; Solid phases ; Solid solutions ; Steel ; Surface layers ; Tungsten ; Yttrium ; Yttrium oxide</subject><ispartof>Inorganic materials : applied research, 2021-05, Vol.12 (3), p.601-609</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 2075-1133, Inorganic Materials: Applied Research, 2021, Vol. 12, No. 3, pp. 601–609. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Fizika i Khimiya Obrabotki Materialov, 2020, No. 2, pp. 16–27.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-4238e66ea186e207c78023f98c08d147d33bdb3d83ad09ed47e127b9132b4d443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2075113321030126$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2075113321030126$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gribkov, V. A.</creatorcontrib><creatorcontrib>Demina, E. V.</creatorcontrib><creatorcontrib>Demin, A. S.</creatorcontrib><creatorcontrib>Maslyaev, S. A.</creatorcontrib><creatorcontrib>Pimenov, V. N.</creatorcontrib><creatorcontrib>Prusakova, M. D.</creatorcontrib><creatorcontrib>Sirotinkin, V. P.</creatorcontrib><creatorcontrib>Rogozhkin, S. V.</creatorcontrib><creatorcontrib>Lyamkin, P. V.</creatorcontrib><creatorcontrib>Padukh, M.</creatorcontrib><title>Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels</title><title>Inorganic materials : applied research</title><addtitle>Inorg. Mater. Appl. Res</addtitle><description>The effect of high-power pulsed fluxes of deuterium ions and deuterium plasma generated in the Plasma Focus PF-1000U device on oxide dispersion strengthened ferritic steel KP4-ODS (Fe–15 Cr–4 Al–2 W–0.35 Y 2 O 3 ) was experimentally studied. When the samples were irradiated with two pulses ( N = 2), the plasma flux power density was q pl ≈ 10 8 W/cm 2 and that of ion beam q i × 10 9 W/cm 2 . At N = 9, q pl ≈ 2 ×10 8 W/cm 2 and q i ≈ 5 × 10 9 W/cm 2 . The pulse duration of the plasma beams was τ pl ≈ 100 ns and that of the ion beams τ i ≈ 50 ns. It was shown that irradiation of the material in the soft mode ( N = 2) leads to surface erosion due to evaporation of the material and is accompanied by the surface polishing effect. In this case, there is no significant change in the initial structural phase state of steel; only a small change in the crystal lattice parameters of solid solutions based on iron and chromium is observed. In the hard irradiation mode ( N = 9), owing to the high heating of the surface layer, in addition to erosion, the material melts. In the structure of the surface layer of the ODS steel, a chromium-based solid solution disappears and only an iron-based solid solution remains, while the number of second-phase nanoparticles increases. The presence of a liquid phase formed upon exposure to fluxes of deuterium ions and deuterium plasma stimulates the possibility of complete dissolution of small (less than ~20 nm) nanoparticles of Y 2 O 3 oxide and partial dissolution of larger (tens of nanometers) nanoparticles. Enhanced in comparison with the solid phase, the diffusion redistribution of elements in the molten surface layer contributes to the formation of Y 2 O 3 nanoparticles and oxides of other elements that make up the ODS steel (Al 2 O 3 , Y–Al–O) upon cooling of the melt.</description><subject>Aluminum oxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Crystal lattices</subject><subject>Deuterium</subject><subject>Deuterium plasma</subject><subject>Diffusion layers</subject><subject>Dispersion hardening steels</subject><subject>Dissolution</subject><subject>Effects of Energy Fluxes on Materials</subject><subject>Ferritic stainless steels</subject><subject>Fluxes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Ion beams</subject><subject>Irradiation</subject><subject>Lattice parameters</subject><subject>Liquid phases</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Oxide dispersion strengthening</subject><subject>Plasma</subject><subject>Plasma focus</subject><subject>Pulse duration</subject><subject>Solid phases</subject><subject>Solid solutions</subject><subject>Steel</subject><subject>Surface layers</subject><subject>Tungsten</subject><subject>Yttrium</subject><subject>Yttrium oxide</subject><issn>2075-1133</issn><issn>2075-115X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLw0AQhRdRsNT-AN8WfI7u7Gxuj9KLFgoVquBbSLKTuiVN6m4C9d-7oaKCOC8zfJxzZhjGrkHcAqC620gRh35CCQIFyOiMjQYUAISv598z4iWbOLcTvkIIUxWOWDuvKio73lb8qa8dab6o-yO5Acyo78iafs-XbeN43uhf6KnO3T7nbcPXR6OJz4w7kHXGg01nqdl2b9QMcWSt6UzpKVHtrthFlfs9k68-Zi-L-fP0MVitH5bT-1VQogi7QElMKIoohyQif34ZJ0JilSalSDSoWCMWukCdYK5FSlrFBDIuUkBZKK0UjtnNKfdg2_eeXJft2t42fmUmQ0xllEISexWcVKVtnbNUZQdr9rn9yEBkw2uzP6_1HnnyOK9ttmR_kv83fQJkWHny</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Gribkov, V. A.</creator><creator>Demina, E. V.</creator><creator>Demin, A. S.</creator><creator>Maslyaev, S. A.</creator><creator>Pimenov, V. N.</creator><creator>Prusakova, M. D.</creator><creator>Sirotinkin, V. P.</creator><creator>Rogozhkin, S. V.</creator><creator>Lyamkin, P. V.</creator><creator>Padukh, M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels</title><author>Gribkov, V. A. ; Demina, E. V. ; Demin, A. S. ; Maslyaev, S. A. ; Pimenov, V. N. ; Prusakova, M. D. ; Sirotinkin, V. P. ; Rogozhkin, S. V. ; Lyamkin, P. V. ; Padukh, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-4238e66ea186e207c78023f98c08d147d33bdb3d83ad09ed47e127b9132b4d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Crystal lattices</topic><topic>Deuterium</topic><topic>Deuterium plasma</topic><topic>Diffusion layers</topic><topic>Dispersion hardening steels</topic><topic>Dissolution</topic><topic>Effects of Energy Fluxes on Materials</topic><topic>Ferritic stainless steels</topic><topic>Fluxes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Ion beams</topic><topic>Irradiation</topic><topic>Lattice parameters</topic><topic>Liquid phases</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Oxide dispersion strengthening</topic><topic>Plasma</topic><topic>Plasma focus</topic><topic>Pulse duration</topic><topic>Solid phases</topic><topic>Solid solutions</topic><topic>Steel</topic><topic>Surface layers</topic><topic>Tungsten</topic><topic>Yttrium</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gribkov, V. A.</creatorcontrib><creatorcontrib>Demina, E. V.</creatorcontrib><creatorcontrib>Demin, A. S.</creatorcontrib><creatorcontrib>Maslyaev, S. A.</creatorcontrib><creatorcontrib>Pimenov, V. N.</creatorcontrib><creatorcontrib>Prusakova, M. D.</creatorcontrib><creatorcontrib>Sirotinkin, V. P.</creatorcontrib><creatorcontrib>Rogozhkin, S. V.</creatorcontrib><creatorcontrib>Lyamkin, P. V.</creatorcontrib><creatorcontrib>Padukh, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Inorganic materials : applied research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gribkov, V. A.</au><au>Demina, E. V.</au><au>Demin, A. S.</au><au>Maslyaev, S. A.</au><au>Pimenov, V. N.</au><au>Prusakova, M. D.</au><au>Sirotinkin, V. P.</au><au>Rogozhkin, S. V.</au><au>Lyamkin, P. V.</au><au>Padukh, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels</atitle><jtitle>Inorganic materials : applied research</jtitle><stitle>Inorg. Mater. Appl. Res</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>12</volume><issue>3</issue><spage>601</spage><epage>609</epage><pages>601-609</pages><issn>2075-1133</issn><eissn>2075-115X</eissn><abstract>The effect of high-power pulsed fluxes of deuterium ions and deuterium plasma generated in the Plasma Focus PF-1000U device on oxide dispersion strengthened ferritic steel KP4-ODS (Fe–15 Cr–4 Al–2 W–0.35 Y 2 O 3 ) was experimentally studied. When the samples were irradiated with two pulses ( N = 2), the plasma flux power density was q pl ≈ 10 8 W/cm 2 and that of ion beam q i × 10 9 W/cm 2 . At N = 9, q pl ≈ 2 ×10 8 W/cm 2 and q i ≈ 5 × 10 9 W/cm 2 . The pulse duration of the plasma beams was τ pl ≈ 100 ns and that of the ion beams τ i ≈ 50 ns. It was shown that irradiation of the material in the soft mode ( N = 2) leads to surface erosion due to evaporation of the material and is accompanied by the surface polishing effect. In this case, there is no significant change in the initial structural phase state of steel; only a small change in the crystal lattice parameters of solid solutions based on iron and chromium is observed. In the hard irradiation mode ( N = 9), owing to the high heating of the surface layer, in addition to erosion, the material melts. In the structure of the surface layer of the ODS steel, a chromium-based solid solution disappears and only an iron-based solid solution remains, while the number of second-phase nanoparticles increases. The presence of a liquid phase formed upon exposure to fluxes of deuterium ions and deuterium plasma stimulates the possibility of complete dissolution of small (less than ~20 nm) nanoparticles of Y 2 O 3 oxide and partial dissolution of larger (tens of nanometers) nanoparticles. Enhanced in comparison with the solid phase, the diffusion redistribution of elements in the molten surface layer contributes to the formation of Y 2 O 3 nanoparticles and oxides of other elements that make up the ODS steel (Al 2 O 3 , Y–Al–O) upon cooling of the melt.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2075113321030126</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2075-1133
ispartof Inorganic materials : applied research, 2021-05, Vol.12 (3), p.601-609
issn 2075-1133
2075-115X
language eng
recordid cdi_proquest_journals_2539269187
source SpringerLink Journals - AutoHoldings
subjects Aluminum oxide
Chemistry
Chemistry and Materials Science
Chromium
Crystal lattices
Deuterium
Deuterium plasma
Diffusion layers
Dispersion hardening steels
Dissolution
Effects of Energy Fluxes on Materials
Ferritic stainless steels
Fluxes
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Ion beams
Irradiation
Lattice parameters
Liquid phases
Materials Science
Nanoparticles
Oxide dispersion strengthening
Plasma
Plasma focus
Pulse duration
Solid phases
Solid solutions
Steel
Surface layers
Tungsten
Yttrium
Yttrium oxide
title Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Pulsed%20Fluxes%20of%20Deuterium%20Ions%20and%20Deuterium%20Plasma%20on%20Oxide%20Dispersion%20Strengthened%20Ferritic%20Steels&rft.jtitle=Inorganic%20materials%20:%20applied%20research&rft.au=Gribkov,%20V.%20A.&rft.date=2021-05-01&rft.volume=12&rft.issue=3&rft.spage=601&rft.epage=609&rft.pages=601-609&rft.issn=2075-1133&rft.eissn=2075-115X&rft_id=info:doi/10.1134/S2075113321030126&rft_dat=%3Cproquest_cross%3E2539269187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539269187&rft_id=info:pmid/&rfr_iscdi=true