Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels
The effect of high-power pulsed fluxes of deuterium ions and deuterium plasma generated in the Plasma Focus PF-1000U device on oxide dispersion strengthened ferritic steel KP4-ODS (Fe–15 Cr–4 Al–2 W–0.35 Y 2 O 3 ) was experimentally studied. When the samples were irradiated with two pulses ( N = 2),...
Gespeichert in:
Veröffentlicht in: | Inorganic materials : applied research 2021-05, Vol.12 (3), p.601-609 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | 3 |
container_start_page | 601 |
container_title | Inorganic materials : applied research |
container_volume | 12 |
creator | Gribkov, V. A. Demina, E. V. Demin, A. S. Maslyaev, S. A. Pimenov, V. N. Prusakova, M. D. Sirotinkin, V. P. Rogozhkin, S. V. Lyamkin, P. V. Padukh, M. |
description | The effect of high-power pulsed fluxes of deuterium ions and deuterium plasma generated in the Plasma Focus PF-1000U device on oxide dispersion strengthened ferritic steel KP4-ODS (Fe–15 Cr–4 Al–2 W–0.35 Y
2
O
3
) was experimentally studied. When the samples were irradiated with two pulses (
N
= 2), the plasma flux power density was
q
pl
≈ 10
8
W/cm
2
and that of ion beam
q
i
× 10
9
W/cm
2
. At
N
= 9,
q
pl
≈ 2 ×10
8
W/cm
2
and
q
i
≈ 5 × 10
9
W/cm
2
. The pulse duration of the plasma beams was τ
pl
≈ 100 ns and that of the ion beams τ
i
≈ 50 ns. It was shown that irradiation of the material in the soft mode (
N
= 2) leads to surface erosion due to evaporation of the material and is accompanied by the surface polishing effect. In this case, there is no significant change in the initial structural phase state of steel; only a small change in the crystal lattice parameters of solid solutions based on iron and chromium is observed. In the hard irradiation mode (
N
= 9), owing to the high heating of the surface layer, in addition to erosion, the material melts. In the structure of the surface layer of the ODS steel, a chromium-based solid solution disappears and only an iron-based solid solution remains, while the number of second-phase nanoparticles increases. The presence of a liquid phase formed upon exposure to fluxes of deuterium ions and deuterium plasma stimulates the possibility of complete dissolution of small (less than ~20 nm) nanoparticles of Y
2
O
3
oxide and partial dissolution of larger (tens of nanometers) nanoparticles. Enhanced in comparison with the solid phase, the diffusion redistribution of elements in the molten surface layer contributes to the formation of Y
2
O
3
nanoparticles and oxides of other elements that make up the ODS steel (Al
2
O
3
, Y–Al–O) upon cooling of the melt. |
doi_str_mv | 10.1134/S2075113321030126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539269187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539269187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-4238e66ea186e207c78023f98c08d147d33bdb3d83ad09ed47e127b9132b4d443</originalsourceid><addsrcrecordid>eNp1kFtLw0AQhRdRsNT-AN8WfI7u7Gxuj9KLFgoVquBbSLKTuiVN6m4C9d-7oaKCOC8zfJxzZhjGrkHcAqC620gRh35CCQIFyOiMjQYUAISv598z4iWbOLcTvkIIUxWOWDuvKio73lb8qa8dab6o-yO5Acyo78iafs-XbeN43uhf6KnO3T7nbcPXR6OJz4w7kHXGg01nqdl2b9QMcWSt6UzpKVHtrthFlfs9k68-Zi-L-fP0MVitH5bT-1VQogi7QElMKIoohyQif34ZJ0JilSalSDSoWCMWukCdYK5FSlrFBDIuUkBZKK0UjtnNKfdg2_eeXJft2t42fmUmQ0xllEISexWcVKVtnbNUZQdr9rn9yEBkw2uzP6_1HnnyOK9ttmR_kv83fQJkWHny</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539269187</pqid></control><display><type>article</type><title>Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gribkov, V. A. ; Demina, E. V. ; Demin, A. S. ; Maslyaev, S. A. ; Pimenov, V. N. ; Prusakova, M. D. ; Sirotinkin, V. P. ; Rogozhkin, S. V. ; Lyamkin, P. V. ; Padukh, M.</creator><creatorcontrib>Gribkov, V. A. ; Demina, E. V. ; Demin, A. S. ; Maslyaev, S. A. ; Pimenov, V. N. ; Prusakova, M. D. ; Sirotinkin, V. P. ; Rogozhkin, S. V. ; Lyamkin, P. V. ; Padukh, M.</creatorcontrib><description>The effect of high-power pulsed fluxes of deuterium ions and deuterium plasma generated in the Plasma Focus PF-1000U device on oxide dispersion strengthened ferritic steel KP4-ODS (Fe–15 Cr–4 Al–2 W–0.35 Y
2
O
3
) was experimentally studied. When the samples were irradiated with two pulses (
N
= 2), the plasma flux power density was
q
pl
≈ 10
8
W/cm
2
and that of ion beam
q
i
× 10
9
W/cm
2
. At
N
= 9,
q
pl
≈ 2 ×10
8
W/cm
2
and
q
i
≈ 5 × 10
9
W/cm
2
. The pulse duration of the plasma beams was τ
pl
≈ 100 ns and that of the ion beams τ
i
≈ 50 ns. It was shown that irradiation of the material in the soft mode (
N
= 2) leads to surface erosion due to evaporation of the material and is accompanied by the surface polishing effect. In this case, there is no significant change in the initial structural phase state of steel; only a small change in the crystal lattice parameters of solid solutions based on iron and chromium is observed. In the hard irradiation mode (
N
= 9), owing to the high heating of the surface layer, in addition to erosion, the material melts. In the structure of the surface layer of the ODS steel, a chromium-based solid solution disappears and only an iron-based solid solution remains, while the number of second-phase nanoparticles increases. The presence of a liquid phase formed upon exposure to fluxes of deuterium ions and deuterium plasma stimulates the possibility of complete dissolution of small (less than ~20 nm) nanoparticles of Y
2
O
3
oxide and partial dissolution of larger (tens of nanometers) nanoparticles. Enhanced in comparison with the solid phase, the diffusion redistribution of elements in the molten surface layer contributes to the formation of Y
2
O
3
nanoparticles and oxides of other elements that make up the ODS steel (Al
2
O
3
, Y–Al–O) upon cooling of the melt.</description><identifier>ISSN: 2075-1133</identifier><identifier>EISSN: 2075-115X</identifier><identifier>DOI: 10.1134/S2075113321030126</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum oxide ; Chemistry ; Chemistry and Materials Science ; Chromium ; Crystal lattices ; Deuterium ; Deuterium plasma ; Diffusion layers ; Dispersion hardening steels ; Dissolution ; Effects of Energy Fluxes on Materials ; Ferritic stainless steels ; Fluxes ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Ion beams ; Irradiation ; Lattice parameters ; Liquid phases ; Materials Science ; Nanoparticles ; Oxide dispersion strengthening ; Plasma ; Plasma focus ; Pulse duration ; Solid phases ; Solid solutions ; Steel ; Surface layers ; Tungsten ; Yttrium ; Yttrium oxide</subject><ispartof>Inorganic materials : applied research, 2021-05, Vol.12 (3), p.601-609</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 2075-1133, Inorganic Materials: Applied Research, 2021, Vol. 12, No. 3, pp. 601–609. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Fizika i Khimiya Obrabotki Materialov, 2020, No. 2, pp. 16–27.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-4238e66ea186e207c78023f98c08d147d33bdb3d83ad09ed47e127b9132b4d443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2075113321030126$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2075113321030126$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gribkov, V. A.</creatorcontrib><creatorcontrib>Demina, E. V.</creatorcontrib><creatorcontrib>Demin, A. S.</creatorcontrib><creatorcontrib>Maslyaev, S. A.</creatorcontrib><creatorcontrib>Pimenov, V. N.</creatorcontrib><creatorcontrib>Prusakova, M. D.</creatorcontrib><creatorcontrib>Sirotinkin, V. P.</creatorcontrib><creatorcontrib>Rogozhkin, S. V.</creatorcontrib><creatorcontrib>Lyamkin, P. V.</creatorcontrib><creatorcontrib>Padukh, M.</creatorcontrib><title>Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels</title><title>Inorganic materials : applied research</title><addtitle>Inorg. Mater. Appl. Res</addtitle><description>The effect of high-power pulsed fluxes of deuterium ions and deuterium plasma generated in the Plasma Focus PF-1000U device on oxide dispersion strengthened ferritic steel KP4-ODS (Fe–15 Cr–4 Al–2 W–0.35 Y
2
O
3
) was experimentally studied. When the samples were irradiated with two pulses (
N
= 2), the plasma flux power density was
q
pl
≈ 10
8
W/cm
2
and that of ion beam
q
i
× 10
9
W/cm
2
. At
N
= 9,
q
pl
≈ 2 ×10
8
W/cm
2
and
q
i
≈ 5 × 10
9
W/cm
2
. The pulse duration of the plasma beams was τ
pl
≈ 100 ns and that of the ion beams τ
i
≈ 50 ns. It was shown that irradiation of the material in the soft mode (
N
= 2) leads to surface erosion due to evaporation of the material and is accompanied by the surface polishing effect. In this case, there is no significant change in the initial structural phase state of steel; only a small change in the crystal lattice parameters of solid solutions based on iron and chromium is observed. In the hard irradiation mode (
N
= 9), owing to the high heating of the surface layer, in addition to erosion, the material melts. In the structure of the surface layer of the ODS steel, a chromium-based solid solution disappears and only an iron-based solid solution remains, while the number of second-phase nanoparticles increases. The presence of a liquid phase formed upon exposure to fluxes of deuterium ions and deuterium plasma stimulates the possibility of complete dissolution of small (less than ~20 nm) nanoparticles of Y
2
O
3
oxide and partial dissolution of larger (tens of nanometers) nanoparticles. Enhanced in comparison with the solid phase, the diffusion redistribution of elements in the molten surface layer contributes to the formation of Y
2
O
3
nanoparticles and oxides of other elements that make up the ODS steel (Al
2
O
3
, Y–Al–O) upon cooling of the melt.</description><subject>Aluminum oxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Crystal lattices</subject><subject>Deuterium</subject><subject>Deuterium plasma</subject><subject>Diffusion layers</subject><subject>Dispersion hardening steels</subject><subject>Dissolution</subject><subject>Effects of Energy Fluxes on Materials</subject><subject>Ferritic stainless steels</subject><subject>Fluxes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Ion beams</subject><subject>Irradiation</subject><subject>Lattice parameters</subject><subject>Liquid phases</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Oxide dispersion strengthening</subject><subject>Plasma</subject><subject>Plasma focus</subject><subject>Pulse duration</subject><subject>Solid phases</subject><subject>Solid solutions</subject><subject>Steel</subject><subject>Surface layers</subject><subject>Tungsten</subject><subject>Yttrium</subject><subject>Yttrium oxide</subject><issn>2075-1133</issn><issn>2075-115X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLw0AQhRdRsNT-AN8WfI7u7Gxuj9KLFgoVquBbSLKTuiVN6m4C9d-7oaKCOC8zfJxzZhjGrkHcAqC620gRh35CCQIFyOiMjQYUAISv598z4iWbOLcTvkIIUxWOWDuvKio73lb8qa8dab6o-yO5Acyo78iafs-XbeN43uhf6KnO3T7nbcPXR6OJz4w7kHXGg01nqdl2b9QMcWSt6UzpKVHtrthFlfs9k68-Zi-L-fP0MVitH5bT-1VQogi7QElMKIoohyQif34ZJ0JilSalSDSoWCMWukCdYK5FSlrFBDIuUkBZKK0UjtnNKfdg2_eeXJft2t42fmUmQ0xllEISexWcVKVtnbNUZQdr9rn9yEBkw2uzP6_1HnnyOK9ttmR_kv83fQJkWHny</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Gribkov, V. A.</creator><creator>Demina, E. V.</creator><creator>Demin, A. S.</creator><creator>Maslyaev, S. A.</creator><creator>Pimenov, V. N.</creator><creator>Prusakova, M. D.</creator><creator>Sirotinkin, V. P.</creator><creator>Rogozhkin, S. V.</creator><creator>Lyamkin, P. V.</creator><creator>Padukh, M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels</title><author>Gribkov, V. A. ; Demina, E. V. ; Demin, A. S. ; Maslyaev, S. A. ; Pimenov, V. N. ; Prusakova, M. D. ; Sirotinkin, V. P. ; Rogozhkin, S. V. ; Lyamkin, P. V. ; Padukh, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-4238e66ea186e207c78023f98c08d147d33bdb3d83ad09ed47e127b9132b4d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Crystal lattices</topic><topic>Deuterium</topic><topic>Deuterium plasma</topic><topic>Diffusion layers</topic><topic>Dispersion hardening steels</topic><topic>Dissolution</topic><topic>Effects of Energy Fluxes on Materials</topic><topic>Ferritic stainless steels</topic><topic>Fluxes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Ion beams</topic><topic>Irradiation</topic><topic>Lattice parameters</topic><topic>Liquid phases</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Oxide dispersion strengthening</topic><topic>Plasma</topic><topic>Plasma focus</topic><topic>Pulse duration</topic><topic>Solid phases</topic><topic>Solid solutions</topic><topic>Steel</topic><topic>Surface layers</topic><topic>Tungsten</topic><topic>Yttrium</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gribkov, V. A.</creatorcontrib><creatorcontrib>Demina, E. V.</creatorcontrib><creatorcontrib>Demin, A. S.</creatorcontrib><creatorcontrib>Maslyaev, S. A.</creatorcontrib><creatorcontrib>Pimenov, V. N.</creatorcontrib><creatorcontrib>Prusakova, M. D.</creatorcontrib><creatorcontrib>Sirotinkin, V. P.</creatorcontrib><creatorcontrib>Rogozhkin, S. V.</creatorcontrib><creatorcontrib>Lyamkin, P. V.</creatorcontrib><creatorcontrib>Padukh, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Inorganic materials : applied research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gribkov, V. A.</au><au>Demina, E. V.</au><au>Demin, A. S.</au><au>Maslyaev, S. A.</au><au>Pimenov, V. N.</au><au>Prusakova, M. D.</au><au>Sirotinkin, V. P.</au><au>Rogozhkin, S. V.</au><au>Lyamkin, P. V.</au><au>Padukh, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels</atitle><jtitle>Inorganic materials : applied research</jtitle><stitle>Inorg. Mater. Appl. Res</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>12</volume><issue>3</issue><spage>601</spage><epage>609</epage><pages>601-609</pages><issn>2075-1133</issn><eissn>2075-115X</eissn><abstract>The effect of high-power pulsed fluxes of deuterium ions and deuterium plasma generated in the Plasma Focus PF-1000U device on oxide dispersion strengthened ferritic steel KP4-ODS (Fe–15 Cr–4 Al–2 W–0.35 Y
2
O
3
) was experimentally studied. When the samples were irradiated with two pulses (
N
= 2), the plasma flux power density was
q
pl
≈ 10
8
W/cm
2
and that of ion beam
q
i
× 10
9
W/cm
2
. At
N
= 9,
q
pl
≈ 2 ×10
8
W/cm
2
and
q
i
≈ 5 × 10
9
W/cm
2
. The pulse duration of the plasma beams was τ
pl
≈ 100 ns and that of the ion beams τ
i
≈ 50 ns. It was shown that irradiation of the material in the soft mode (
N
= 2) leads to surface erosion due to evaporation of the material and is accompanied by the surface polishing effect. In this case, there is no significant change in the initial structural phase state of steel; only a small change in the crystal lattice parameters of solid solutions based on iron and chromium is observed. In the hard irradiation mode (
N
= 9), owing to the high heating of the surface layer, in addition to erosion, the material melts. In the structure of the surface layer of the ODS steel, a chromium-based solid solution disappears and only an iron-based solid solution remains, while the number of second-phase nanoparticles increases. The presence of a liquid phase formed upon exposure to fluxes of deuterium ions and deuterium plasma stimulates the possibility of complete dissolution of small (less than ~20 nm) nanoparticles of Y
2
O
3
oxide and partial dissolution of larger (tens of nanometers) nanoparticles. Enhanced in comparison with the solid phase, the diffusion redistribution of elements in the molten surface layer contributes to the formation of Y
2
O
3
nanoparticles and oxides of other elements that make up the ODS steel (Al
2
O
3
, Y–Al–O) upon cooling of the melt.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2075113321030126</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1133 |
ispartof | Inorganic materials : applied research, 2021-05, Vol.12 (3), p.601-609 |
issn | 2075-1133 2075-115X |
language | eng |
recordid | cdi_proquest_journals_2539269187 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum oxide Chemistry Chemistry and Materials Science Chromium Crystal lattices Deuterium Deuterium plasma Diffusion layers Dispersion hardening steels Dissolution Effects of Energy Fluxes on Materials Ferritic stainless steels Fluxes Industrial Chemistry/Chemical Engineering Inorganic Chemistry Ion beams Irradiation Lattice parameters Liquid phases Materials Science Nanoparticles Oxide dispersion strengthening Plasma Plasma focus Pulse duration Solid phases Solid solutions Steel Surface layers Tungsten Yttrium Yttrium oxide |
title | Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion Strengthened Ferritic Steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Pulsed%20Fluxes%20of%20Deuterium%20Ions%20and%20Deuterium%20Plasma%20on%20Oxide%20Dispersion%20Strengthened%20Ferritic%20Steels&rft.jtitle=Inorganic%20materials%20:%20applied%20research&rft.au=Gribkov,%20V.%20A.&rft.date=2021-05-01&rft.volume=12&rft.issue=3&rft.spage=601&rft.epage=609&rft.pages=601-609&rft.issn=2075-1133&rft.eissn=2075-115X&rft_id=info:doi/10.1134/S2075113321030126&rft_dat=%3Cproquest_cross%3E2539269187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539269187&rft_id=info:pmid/&rfr_iscdi=true |