Proper Disconnection of Graphs
For an edge-colored graph G , a set F of edges of G is called a proper edge-cut if F is an edge-cut of G and any pair of adjacent edges in F are assigned different colors. An edge-colored graph is proper disconnected if for each pair of distinct vertices of G there exists a proper edge-cut separatin...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2021-07, Vol.44 (4), p.2465-2477 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2477 |
---|---|
container_issue | 4 |
container_start_page | 2465 |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 44 |
creator | Bai, Xuqing Chen, You Ji, Meng Li, Xueliang Weng, Yindi Wu, Wenyan |
description | For an edge-colored graph
G
, a set
F
of edges of
G
is called a
proper edge-cut
if
F
is an edge-cut of
G
and any pair of adjacent edges in
F
are assigned different colors. An edge-colored graph is
proper disconnected
if for each pair of distinct vertices of
G
there exists a proper edge-cut separating them. For a connected graph
G
, the
proper disconnection number
of
G
, denoted by
pd
(
G
), is the minimum number of colors that are needed in order to make
G
proper disconnected. In this paper, we first give the exact values of the proper disconnection numbers for some special families of graphs. Next, we obtain a sharp upper bound of
pd
(
G
) for a connected graph
G
of order
n
, i.e,
p
d
(
G
)
≤
min
{
χ
′
(
G
)
-
1
,
n
2
}
. Finally, we show that for given integers
k
and
n
, the minimum size of a connected graph
G
of order
n
with
p
d
(
G
)
=
k
is
n
-
1
for
k
=
1
and
n
+
2
k
-
4
for
2
≤
k
≤
⌈
n
2
⌉
. |
doi_str_mv | 10.1007/s40840-020-01069-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539268413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539268413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fac1111e361c5453938b75fc2baa0504fc5c0fde57c91e5ef0a85295ed3062263</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMouNT-AQ-y4Dk6mWSyu0epWoWCHvQc0jTRLbpZk_bgvze6gjcfPOby3hv4GDsVcCEAmsusoFXAAYsF6I7TAatQtMAVgj5kFQjUXDdAx2ye8xaKSKNGUbGzxxRHn-rrPrs4DN7t-jjUMdTLZMfXfMKOgn3Lfv57Z-z59uZpccdXD8v7xdWKOym6HQ_WiSIvtXCkSHayXTcUHK6tBQIVHDkIG0-N64QnH8C2hB35jQSNqOWMnU-7Y4ofe593Zhv3aSgvDZY51K0SsqRwSrkUc04-mDH17zZ9GgHmG4WZUJiCwvygMFRKcirlEh5efPqb_qf1BfpPXoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539268413</pqid></control><display><type>article</type><title>Proper Disconnection of Graphs</title><source>SpringerLink Journals</source><creator>Bai, Xuqing ; Chen, You ; Ji, Meng ; Li, Xueliang ; Weng, Yindi ; Wu, Wenyan</creator><creatorcontrib>Bai, Xuqing ; Chen, You ; Ji, Meng ; Li, Xueliang ; Weng, Yindi ; Wu, Wenyan</creatorcontrib><description>For an edge-colored graph
G
, a set
F
of edges of
G
is called a
proper edge-cut
if
F
is an edge-cut of
G
and any pair of adjacent edges in
F
are assigned different colors. An edge-colored graph is
proper disconnected
if for each pair of distinct vertices of
G
there exists a proper edge-cut separating them. For a connected graph
G
, the
proper disconnection number
of
G
, denoted by
pd
(
G
), is the minimum number of colors that are needed in order to make
G
proper disconnected. In this paper, we first give the exact values of the proper disconnection numbers for some special families of graphs. Next, we obtain a sharp upper bound of
pd
(
G
) for a connected graph
G
of order
n
, i.e,
p
d
(
G
)
≤
min
{
χ
′
(
G
)
-
1
,
n
2
}
. Finally, we show that for given integers
k
and
n
, the minimum size of a connected graph
G
of order
n
with
p
d
(
G
)
=
k
is
n
-
1
for
k
=
1
and
n
+
2
k
-
4
for
2
≤
k
≤
⌈
n
2
⌉
.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-020-01069-5</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Apexes ; Applications of Mathematics ; Graph coloring ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Upper bounds</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2021-07, Vol.44 (4), p.2465-2477</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2021</rights><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fac1111e361c5453938b75fc2baa0504fc5c0fde57c91e5ef0a85295ed3062263</citedby><cites>FETCH-LOGICAL-c319t-fac1111e361c5453938b75fc2baa0504fc5c0fde57c91e5ef0a85295ed3062263</cites><orcidid>0000-0002-8335-9873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-020-01069-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-020-01069-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bai, Xuqing</creatorcontrib><creatorcontrib>Chen, You</creatorcontrib><creatorcontrib>Ji, Meng</creatorcontrib><creatorcontrib>Li, Xueliang</creatorcontrib><creatorcontrib>Weng, Yindi</creatorcontrib><creatorcontrib>Wu, Wenyan</creatorcontrib><title>Proper Disconnection of Graphs</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>For an edge-colored graph
G
, a set
F
of edges of
G
is called a
proper edge-cut
if
F
is an edge-cut of
G
and any pair of adjacent edges in
F
are assigned different colors. An edge-colored graph is
proper disconnected
if for each pair of distinct vertices of
G
there exists a proper edge-cut separating them. For a connected graph
G
, the
proper disconnection number
of
G
, denoted by
pd
(
G
), is the minimum number of colors that are needed in order to make
G
proper disconnected. In this paper, we first give the exact values of the proper disconnection numbers for some special families of graphs. Next, we obtain a sharp upper bound of
pd
(
G
) for a connected graph
G
of order
n
, i.e,
p
d
(
G
)
≤
min
{
χ
′
(
G
)
-
1
,
n
2
}
. Finally, we show that for given integers
k
and
n
, the minimum size of a connected graph
G
of order
n
with
p
d
(
G
)
=
k
is
n
-
1
for
k
=
1
and
n
+
2
k
-
4
for
2
≤
k
≤
⌈
n
2
⌉
.</description><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Upper bounds</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMouNT-AQ-y4Dk6mWSyu0epWoWCHvQc0jTRLbpZk_bgvze6gjcfPOby3hv4GDsVcCEAmsusoFXAAYsF6I7TAatQtMAVgj5kFQjUXDdAx2ye8xaKSKNGUbGzxxRHn-rrPrs4DN7t-jjUMdTLZMfXfMKOgn3Lfv57Z-z59uZpccdXD8v7xdWKOym6HQ_WiSIvtXCkSHayXTcUHK6tBQIVHDkIG0-N64QnH8C2hB35jQSNqOWMnU-7Y4ofe593Zhv3aSgvDZY51K0SsqRwSrkUc04-mDH17zZ9GgHmG4WZUJiCwvygMFRKcirlEh5efPqb_qf1BfpPXoU</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Bai, Xuqing</creator><creator>Chen, You</creator><creator>Ji, Meng</creator><creator>Li, Xueliang</creator><creator>Weng, Yindi</creator><creator>Wu, Wenyan</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8335-9873</orcidid></search><sort><creationdate>20210701</creationdate><title>Proper Disconnection of Graphs</title><author>Bai, Xuqing ; Chen, You ; Ji, Meng ; Li, Xueliang ; Weng, Yindi ; Wu, Wenyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fac1111e361c5453938b75fc2baa0504fc5c0fde57c91e5ef0a85295ed3062263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Xuqing</creatorcontrib><creatorcontrib>Chen, You</creatorcontrib><creatorcontrib>Ji, Meng</creatorcontrib><creatorcontrib>Li, Xueliang</creatorcontrib><creatorcontrib>Weng, Yindi</creatorcontrib><creatorcontrib>Wu, Wenyan</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Xuqing</au><au>Chen, You</au><au>Ji, Meng</au><au>Li, Xueliang</au><au>Weng, Yindi</au><au>Wu, Wenyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proper Disconnection of Graphs</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>44</volume><issue>4</issue><spage>2465</spage><epage>2477</epage><pages>2465-2477</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>For an edge-colored graph
G
, a set
F
of edges of
G
is called a
proper edge-cut
if
F
is an edge-cut of
G
and any pair of adjacent edges in
F
are assigned different colors. An edge-colored graph is
proper disconnected
if for each pair of distinct vertices of
G
there exists a proper edge-cut separating them. For a connected graph
G
, the
proper disconnection number
of
G
, denoted by
pd
(
G
), is the minimum number of colors that are needed in order to make
G
proper disconnected. In this paper, we first give the exact values of the proper disconnection numbers for some special families of graphs. Next, we obtain a sharp upper bound of
pd
(
G
) for a connected graph
G
of order
n
, i.e,
p
d
(
G
)
≤
min
{
χ
′
(
G
)
-
1
,
n
2
}
. Finally, we show that for given integers
k
and
n
, the minimum size of a connected graph
G
of order
n
with
p
d
(
G
)
=
k
is
n
-
1
for
k
=
1
and
n
+
2
k
-
4
for
2
≤
k
≤
⌈
n
2
⌉
.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-020-01069-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8335-9873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2021-07, Vol.44 (4), p.2465-2477 |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2539268413 |
source | SpringerLink Journals |
subjects | Apexes Applications of Mathematics Graph coloring Graph theory Graphs Mathematics Mathematics and Statistics Upper bounds |
title | Proper Disconnection of Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proper%20Disconnection%20of%20Graphs&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Bai,%20Xuqing&rft.date=2021-07-01&rft.volume=44&rft.issue=4&rft.spage=2465&rft.epage=2477&rft.pages=2465-2477&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-020-01069-5&rft_dat=%3Cproquest_cross%3E2539268413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539268413&rft_id=info:pmid/&rfr_iscdi=true |