Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity

In this paper, the Carey nonconforming finite element method (NFEM) for the second order elliptic problem is discussed. By means of the different techniques from the existing literatures, the non-uniform and uniform convergences are obtained only under the lowest regularity assumption on the solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2021, Vol.64 (2), p.246-254
Hauptverfasser: Shi, Dongwei, CaixiaWang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 2
container_start_page 246
container_title Russian physics journal
container_volume 64
creator Shi, Dongwei
CaixiaWang
description In this paper, the Carey nonconforming finite element method (NFEM) for the second order elliptic problem is discussed. By means of the different techniques from the existing literatures, the non-uniform and uniform convergences are obtained only under the lowest regularity assumption on the solution u ∈ H 0 1 Ω .
doi_str_mv 10.1007/s11182-021-02322-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2539268195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681647579</galeid><sourcerecordid>A681647579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-733015edc2263b586fb6b5edc77562b9ee43777bc034b9d72c29c3a6a972119b3</originalsourceid><addsrcrecordid>eNp9kV9PHCEUxSeNTarWL9Ankj6P8mcHhsfNRm2TjRqtz4Rh7oyYWdgCq9n45XvXaeKbIQS4_A7ck1NVPxg9Z5Sqi8wYa3lNOcMpOK-bL9Uxa5SoNeftEe6pXNRt26pv1UnOz5SiTKrj6m0VwwukEYIDsgx22mefSRzIyibYk5sYXAxDTBsfRnLlgy9ALifYQCgEy6Q8AXkAZPr6NvWQ8HLy2-IduUuxQ5C8-vL0jq3jK-RC7mHcTTb5sv9efR3slOHs_3paPV5d_ln9qte3179Xy3XtBNWlVkJQ1kDvOJeia1o5dLI7nJVqJO80wEIopTpHxaLTveKOayestFpxxnQnTquf87vbFP_usAfzHHcJvWbDG6G5bJlukDqfqdFOYDyaLsk6HD1sPBqEwWN9ibBcqEZpFPBZ4FLMOcFgtslvbNobRs0hFTOnYjAV856KOfwiZlFGOIyQPnr5RPUPUNiQHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539268195</pqid></control><display><type>article</type><title>Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shi, Dongwei ; CaixiaWang</creator><creatorcontrib>Shi, Dongwei ; CaixiaWang</creatorcontrib><description>In this paper, the Carey nonconforming finite element method (NFEM) for the second order elliptic problem is discussed. By means of the different techniques from the existing literatures, the non-uniform and uniform convergences are obtained only under the lowest regularity assumption on the solution u ∈ H 0 1 Ω .</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-021-02322-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Anisotropy ; Condensed Matter Physics ; Convergence ; Finite element method ; Hadrons ; Heavy Ions ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Regularity ; Theoretical</subject><ispartof>Russian physics journal, 2021, Vol.64 (2), p.246-254</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-733015edc2263b586fb6b5edc77562b9ee43777bc034b9d72c29c3a6a972119b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-021-02322-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-021-02322-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shi, Dongwei</creatorcontrib><creatorcontrib>CaixiaWang</creatorcontrib><title>Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>In this paper, the Carey nonconforming finite element method (NFEM) for the second order elliptic problem is discussed. By means of the different techniques from the existing literatures, the non-uniform and uniform convergences are obtained only under the lowest regularity assumption on the solution u ∈ H 0 1 Ω .</description><subject>Analysis</subject><subject>Anisotropy</subject><subject>Condensed Matter Physics</subject><subject>Convergence</subject><subject>Finite element method</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regularity</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV9PHCEUxSeNTarWL9Ankj6P8mcHhsfNRm2TjRqtz4Rh7oyYWdgCq9n45XvXaeKbIQS4_A7ck1NVPxg9Z5Sqi8wYa3lNOcMpOK-bL9Uxa5SoNeftEe6pXNRt26pv1UnOz5SiTKrj6m0VwwukEYIDsgx22mefSRzIyibYk5sYXAxDTBsfRnLlgy9ALifYQCgEy6Q8AXkAZPr6NvWQ8HLy2-IduUuxQ5C8-vL0jq3jK-RC7mHcTTb5sv9efR3slOHs_3paPV5d_ln9qte3179Xy3XtBNWlVkJQ1kDvOJeia1o5dLI7nJVqJO80wEIopTpHxaLTveKOayestFpxxnQnTquf87vbFP_usAfzHHcJvWbDG6G5bJlukDqfqdFOYDyaLsk6HD1sPBqEwWN9ibBcqEZpFPBZ4FLMOcFgtslvbNobRs0hFTOnYjAV856KOfwiZlFGOIyQPnr5RPUPUNiQHw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Shi, Dongwei</creator><creator>CaixiaWang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity</title><author>Shi, Dongwei ; CaixiaWang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-733015edc2263b586fb6b5edc77562b9ee43777bc034b9d72c29c3a6a972119b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Anisotropy</topic><topic>Condensed Matter Physics</topic><topic>Convergence</topic><topic>Finite element method</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regularity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Dongwei</creatorcontrib><creatorcontrib>CaixiaWang</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Dongwei</au><au>CaixiaWang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2021</date><risdate>2021</risdate><volume>64</volume><issue>2</issue><spage>246</spage><epage>254</epage><pages>246-254</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>In this paper, the Carey nonconforming finite element method (NFEM) for the second order elliptic problem is discussed. By means of the different techniques from the existing literatures, the non-uniform and uniform convergences are obtained only under the lowest regularity assumption on the solution u ∈ H 0 1 Ω .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-021-02322-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2021, Vol.64 (2), p.246-254
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_2539268195
source SpringerLink Journals - AutoHoldings
subjects Analysis
Anisotropy
Condensed Matter Physics
Convergence
Finite element method
Hadrons
Heavy Ions
Lasers
Mathematical and Computational Physics
Nuclear Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Regularity
Theoretical
title Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20Analysis%20of%20Carey%20Nonconforming%20Finite%20Element%20for%20the%20Second-Order%20Elliptic%20Problem%20with%20the%20Lowest%20Regularity&rft.jtitle=Russian%20physics%20journal&rft.au=Shi,%20Dongwei&rft.date=2021&rft.volume=64&rft.issue=2&rft.spage=246&rft.epage=254&rft.pages=246-254&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-021-02322-5&rft_dat=%3Cgale_proqu%3EA681647579%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539268195&rft_id=info:pmid/&rft_galeid=A681647579&rfr_iscdi=true