Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity
In this paper, the Carey nonconforming finite element method (NFEM) for the second order elliptic problem is discussed. By means of the different techniques from the existing literatures, the non-uniform and uniform convergences are obtained only under the lowest regularity assumption on the solutio...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2021, Vol.64 (2), p.246-254 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 2 |
container_start_page | 246 |
container_title | Russian physics journal |
container_volume | 64 |
creator | Shi, Dongwei CaixiaWang |
description | In this paper, the Carey nonconforming finite element method (NFEM) for the second order elliptic problem is discussed. By means of the different techniques from the existing literatures, the non-uniform and uniform convergences are obtained only under the lowest regularity assumption on the solution
u
∈
H
0
1
Ω
. |
doi_str_mv | 10.1007/s11182-021-02322-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2539268195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681647579</galeid><sourcerecordid>A681647579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-733015edc2263b586fb6b5edc77562b9ee43777bc034b9d72c29c3a6a972119b3</originalsourceid><addsrcrecordid>eNp9kV9PHCEUxSeNTarWL9Ankj6P8mcHhsfNRm2TjRqtz4Rh7oyYWdgCq9n45XvXaeKbIQS4_A7ck1NVPxg9Z5Sqi8wYa3lNOcMpOK-bL9Uxa5SoNeftEe6pXNRt26pv1UnOz5SiTKrj6m0VwwukEYIDsgx22mefSRzIyibYk5sYXAxDTBsfRnLlgy9ALifYQCgEy6Q8AXkAZPr6NvWQ8HLy2-IduUuxQ5C8-vL0jq3jK-RC7mHcTTb5sv9efR3slOHs_3paPV5d_ln9qte3179Xy3XtBNWlVkJQ1kDvOJeia1o5dLI7nJVqJO80wEIopTpHxaLTveKOayestFpxxnQnTquf87vbFP_usAfzHHcJvWbDG6G5bJlukDqfqdFOYDyaLsk6HD1sPBqEwWN9ibBcqEZpFPBZ4FLMOcFgtslvbNobRs0hFTOnYjAV856KOfwiZlFGOIyQPnr5RPUPUNiQHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539268195</pqid></control><display><type>article</type><title>Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shi, Dongwei ; CaixiaWang</creator><creatorcontrib>Shi, Dongwei ; CaixiaWang</creatorcontrib><description>In this paper, the Carey nonconforming finite element method (NFEM) for the second order elliptic problem is discussed. By means of the different techniques from the existing literatures, the non-uniform and uniform convergences are obtained only under the lowest regularity assumption on the solution
u
∈
H
0
1
Ω
.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-021-02322-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Anisotropy ; Condensed Matter Physics ; Convergence ; Finite element method ; Hadrons ; Heavy Ions ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Regularity ; Theoretical</subject><ispartof>Russian physics journal, 2021, Vol.64 (2), p.246-254</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-733015edc2263b586fb6b5edc77562b9ee43777bc034b9d72c29c3a6a972119b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-021-02322-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-021-02322-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shi, Dongwei</creatorcontrib><creatorcontrib>CaixiaWang</creatorcontrib><title>Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>In this paper, the Carey nonconforming finite element method (NFEM) for the second order elliptic problem is discussed. By means of the different techniques from the existing literatures, the non-uniform and uniform convergences are obtained only under the lowest regularity assumption on the solution
u
∈
H
0
1
Ω
.</description><subject>Analysis</subject><subject>Anisotropy</subject><subject>Condensed Matter Physics</subject><subject>Convergence</subject><subject>Finite element method</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regularity</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV9PHCEUxSeNTarWL9Ankj6P8mcHhsfNRm2TjRqtz4Rh7oyYWdgCq9n45XvXaeKbIQS4_A7ck1NVPxg9Z5Sqi8wYa3lNOcMpOK-bL9Uxa5SoNeftEe6pXNRt26pv1UnOz5SiTKrj6m0VwwukEYIDsgx22mefSRzIyibYk5sYXAxDTBsfRnLlgy9ALifYQCgEy6Q8AXkAZPr6NvWQ8HLy2-IduUuxQ5C8-vL0jq3jK-RC7mHcTTb5sv9efR3slOHs_3paPV5d_ln9qte3179Xy3XtBNWlVkJQ1kDvOJeia1o5dLI7nJVqJO80wEIopTpHxaLTveKOayestFpxxnQnTquf87vbFP_usAfzHHcJvWbDG6G5bJlukDqfqdFOYDyaLsk6HD1sPBqEwWN9ibBcqEZpFPBZ4FLMOcFgtslvbNobRs0hFTOnYjAV856KOfwiZlFGOIyQPnr5RPUPUNiQHw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Shi, Dongwei</creator><creator>CaixiaWang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity</title><author>Shi, Dongwei ; CaixiaWang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-733015edc2263b586fb6b5edc77562b9ee43777bc034b9d72c29c3a6a972119b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Anisotropy</topic><topic>Condensed Matter Physics</topic><topic>Convergence</topic><topic>Finite element method</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regularity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Dongwei</creatorcontrib><creatorcontrib>CaixiaWang</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Dongwei</au><au>CaixiaWang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2021</date><risdate>2021</risdate><volume>64</volume><issue>2</issue><spage>246</spage><epage>254</epage><pages>246-254</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>In this paper, the Carey nonconforming finite element method (NFEM) for the second order elliptic problem is discussed. By means of the different techniques from the existing literatures, the non-uniform and uniform convergences are obtained only under the lowest regularity assumption on the solution
u
∈
H
0
1
Ω
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-021-02322-5</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2021, Vol.64 (2), p.246-254 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_2539268195 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Anisotropy Condensed Matter Physics Convergence Finite element method Hadrons Heavy Ions Lasers Mathematical and Computational Physics Nuclear Physics Optical Devices Optics Photonics Physics Physics and Astronomy Regularity Theoretical |
title | Convergence Analysis of Carey Nonconforming Finite Element for the Second-Order Elliptic Problem with the Lowest Regularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20Analysis%20of%20Carey%20Nonconforming%20Finite%20Element%20for%20the%20Second-Order%20Elliptic%20Problem%20with%20the%20Lowest%20Regularity&rft.jtitle=Russian%20physics%20journal&rft.au=Shi,%20Dongwei&rft.date=2021&rft.volume=64&rft.issue=2&rft.spage=246&rft.epage=254&rft.pages=246-254&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-021-02322-5&rft_dat=%3Cgale_proqu%3EA681647579%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539268195&rft_id=info:pmid/&rft_galeid=A681647579&rfr_iscdi=true |